Xiaoqiao Zhang, Jian Zheng, Florian Johannes Boch, Simon Nickl, Klaus Köhler
{"title":"Decomposition of N2O by Ruthenium Catalysts – RuO2 as Active Phase on Non‐Reducible Supports","authors":"Xiaoqiao Zhang, Jian Zheng, Florian Johannes Boch, Simon Nickl, Klaus Köhler","doi":"10.1002/cctc.202400347","DOIUrl":null,"url":null,"abstract":"Ruthenium has been supported on specifically chosen non‐reducible supports (Al2O3, SiO2, Al2O3‐SiO2 mixed oxides, Mg/ZnAl2O4 spinel, and AlF3), and these catalysts have been tested in the decomposition of nitrous oxide, N2O, to identify the catalytically active phase of ruthenium. Pure, bulk ruthenium dioxide, RuO2, and isolated Ru surface complexes have been synthesized and investigated for comparison. The catalysts were characterized by X‐ray diffraction, H2 chemisorption, N2 physisorption, temperature‐programmed reduction, and desorption TPR/TPD), andin situ infrared spectroscopy (IR). All aimed experiments strongly indicate that the decomposition of N2O occurs on ruthenium dioxide, RuO2, instead of metal particles. H2 pre‐reduction to Ru metal has inhibitory effects for all oxygen‐containing supports. The activity increases with the dispersion of ruthenium oxide. Bulk RuO2 showed the best catalytic performance.","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"1 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemCatChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cctc.202400347","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ruthenium has been supported on specifically chosen non‐reducible supports (Al2O3, SiO2, Al2O3‐SiO2 mixed oxides, Mg/ZnAl2O4 spinel, and AlF3), and these catalysts have been tested in the decomposition of nitrous oxide, N2O, to identify the catalytically active phase of ruthenium. Pure, bulk ruthenium dioxide, RuO2, and isolated Ru surface complexes have been synthesized and investigated for comparison. The catalysts were characterized by X‐ray diffraction, H2 chemisorption, N2 physisorption, temperature‐programmed reduction, and desorption TPR/TPD), andin situ infrared spectroscopy (IR). All aimed experiments strongly indicate that the decomposition of N2O occurs on ruthenium dioxide, RuO2, instead of metal particles. H2 pre‐reduction to Ru metal has inhibitory effects for all oxygen‐containing supports. The activity increases with the dispersion of ruthenium oxide. Bulk RuO2 showed the best catalytic performance.
期刊介绍:
With an impact factor of 4.495 (2018), ChemCatChem is one of the premier journals in the field of catalysis. The journal provides primary research papers and critical secondary information on heterogeneous, homogeneous and bio- and nanocatalysis. The journal is well placed to strengthen cross-communication within between these communities. Its authors and readers come from academia, the chemical industry, and government laboratories across the world. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and is supported by the German Catalysis Society.