Synaptic Modulation using Interspike Intervals Increases Energy Efficiency of Spiking Neural Networks

Dylan Adams, Magda Zajaczkowska, Ashiq Anjum, Andrea Soltoggio, Shirin Dora
{"title":"Synaptic Modulation using Interspike Intervals Increases Energy Efficiency of Spiking Neural Networks","authors":"Dylan Adams, Magda Zajaczkowska, Ashiq Anjum, Andrea Soltoggio, Shirin Dora","doi":"arxiv-2408.02961","DOIUrl":null,"url":null,"abstract":"Despite basic differences between Spiking Neural Networks (SNN) and\nArtificial Neural Networks (ANN), most research on SNNs involve adapting\nANN-based methods for SNNs. Pruning (dropping connections) and quantization\n(reducing precision) are often used to improve energy efficiency of SNNs. These\nmethods are very effective for ANNs whose energy needs are determined by\nsignals transmitted on synapses. However, the event-driven paradigm in SNNs\nimplies that energy is consumed by spikes. In this paper, we propose a new\nsynapse model whose weights are modulated by Interspike Intervals (ISI) i.e.\ntime difference between two spikes. SNNs composed of this synapse model, termed\nISI Modulated SNNs (IMSNN), can use gradient descent to estimate how the ISI of\na neuron changes after updating its synaptic parameters. A higher ISI implies\nfewer spikes and vice-versa. The learning algorithm for IMSNNs exploits this\ninformation to selectively propagate gradients such that learning is achieved\nby increasing the ISIs resulting in a network that generates fewer spikes. The\nperformance of IMSNNs with dense and convolutional layers have been evaluated\nin terms of classification accuracy and the number of spikes using the MNIST\nand FashionMNIST datasets. The performance comparison with conventional SNNs\nshows that IMSNNs exhibit upto 90% reduction in the number of spikes while\nmaintaining similar classification accuracy.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"137 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite basic differences between Spiking Neural Networks (SNN) and Artificial Neural Networks (ANN), most research on SNNs involve adapting ANN-based methods for SNNs. Pruning (dropping connections) and quantization (reducing precision) are often used to improve energy efficiency of SNNs. These methods are very effective for ANNs whose energy needs are determined by signals transmitted on synapses. However, the event-driven paradigm in SNNs implies that energy is consumed by spikes. In this paper, we propose a new synapse model whose weights are modulated by Interspike Intervals (ISI) i.e. time difference between two spikes. SNNs composed of this synapse model, termed ISI Modulated SNNs (IMSNN), can use gradient descent to estimate how the ISI of a neuron changes after updating its synaptic parameters. A higher ISI implies fewer spikes and vice-versa. The learning algorithm for IMSNNs exploits this information to selectively propagate gradients such that learning is achieved by increasing the ISIs resulting in a network that generates fewer spikes. The performance of IMSNNs with dense and convolutional layers have been evaluated in terms of classification accuracy and the number of spikes using the MNIST and FashionMNIST datasets. The performance comparison with conventional SNNs shows that IMSNNs exhibit upto 90% reduction in the number of spikes while maintaining similar classification accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用间期突触调制提高尖峰神经网络的能效
尽管尖峰神经网络(SNN)与人工神经网络(ANN)之间存在基本差异,但有关 SNN 的大多数研究都涉及将基于 ANN 的方法应用于 SNN。剪枝(放弃连接)和量化(降低精度)通常用于提高 SNN 的能效。这些方法对于能量需求由突触上传输的信号决定的智能网络非常有效。然而,SNN 中的事件驱动模式意味着能量会被尖峰消耗掉。在本文中,我们提出了一种新闻突触模型,该模型的权重由突触间期(ISI)(即两个尖峰之间的时间差)调制。由这种突触模型组成的 SNN 被称为 ISI 调制 SNN(IMSN),可以使用梯度下降法来估计神经元在更新突触参数后 ISI 的变化情况。ISI 越高意味着尖峰越少,反之亦然。IMSNN 的学习算法就是利用这一信息,有选择地传播梯度,从而通过提高 ISI 来实现学习,使网络产生更少的尖峰。我们使用 MNIST 和 FashionMNIST 数据集评估了具有密集层和卷积层的 IMSNN 在分类准确性和尖峰数量方面的性能。与传统 SNN 的性能比较表明,IMSNN 在保持类似分类准确性的同时,尖峰数量减少了高达 90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware-Friendly Implementation of Physical Reservoir Computing with CMOS-based Time-domain Analog Spiking Neurons Self-Contrastive Forward-Forward Algorithm Bio-Inspired Mamba: Temporal Locality and Bioplausible Learning in Selective State Space Models PReLU: Yet Another Single-Layer Solution to the XOR Problem Inferno: An Extensible Framework for Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1