Hardware-Friendly Implementation of Physical Reservoir Computing with CMOS-based Time-domain Analog Spiking Neurons

Nanako Kimura, Ckristian Duran, Zolboo Byambadorj, Ryosho Nakane, Tetsuya Iizuka
{"title":"Hardware-Friendly Implementation of Physical Reservoir Computing with CMOS-based Time-domain Analog Spiking Neurons","authors":"Nanako Kimura, Ckristian Duran, Zolboo Byambadorj, Ryosho Nakane, Tetsuya Iizuka","doi":"arxiv-2409.11612","DOIUrl":null,"url":null,"abstract":"This paper introduces an analog spiking neuron that utilizes time-domain\ninformation, i.e., a time interval of two signal transitions and a pulse width,\nto construct a spiking neural network (SNN) for a hardware-friendly physical\nreservoir computing (RC) on a complementary metal-oxide-semiconductor (CMOS)\nplatform. A neuron with leaky integrate-and-fire is realized by employing two\nvoltage-controlled oscillators (VCOs) with opposite sensitivities to the\ninternal control voltage, and the neuron connection structure is restricted by\nthe use of only 4 neighboring neurons on the 2-dimensional plane to feasibly\nconstruct a regular network topology. Such a system enables us to compose an\nSNN with a counter-based readout circuit, which simplifies the hardware\nimplementation of the SNN. Moreover, another technical advantage thanks to the\nbottom-up integration is the capability of dynamically capturing every neuron\nstate in the network, which can significantly contribute to finding guidelines\non how to enhance the performance for various computational tasks in temporal\ninformation processing. Diverse nonlinear physical dynamics needed for RC can\nbe realized by collective behavior through dynamic interaction between neurons,\nlike coupled oscillators, despite the simple network structure. With behavioral\nsystem-level simulations, we demonstrate physical RC through short-term memory\nand exclusive OR tasks, and the spoken digit recognition task with an accuracy\nof 97.7% as well. Our system is considerably feasible for practical\napplications and also can be a useful platform for studying the mechanism of\nphysical RC.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces an analog spiking neuron that utilizes time-domain information, i.e., a time interval of two signal transitions and a pulse width, to construct a spiking neural network (SNN) for a hardware-friendly physical reservoir computing (RC) on a complementary metal-oxide-semiconductor (CMOS) platform. A neuron with leaky integrate-and-fire is realized by employing two voltage-controlled oscillators (VCOs) with opposite sensitivities to the internal control voltage, and the neuron connection structure is restricted by the use of only 4 neighboring neurons on the 2-dimensional plane to feasibly construct a regular network topology. Such a system enables us to compose an SNN with a counter-based readout circuit, which simplifies the hardware implementation of the SNN. Moreover, another technical advantage thanks to the bottom-up integration is the capability of dynamically capturing every neuron state in the network, which can significantly contribute to finding guidelines on how to enhance the performance for various computational tasks in temporal information processing. Diverse nonlinear physical dynamics needed for RC can be realized by collective behavior through dynamic interaction between neurons, like coupled oscillators, despite the simple network structure. With behavioral system-level simulations, we demonstrate physical RC through short-term memory and exclusive OR tasks, and the spoken digit recognition task with an accuracy of 97.7% as well. Our system is considerably feasible for practical applications and also can be a useful platform for studying the mechanism of physical RC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于 CMOS 的时域模拟尖峰神经元,以硬件友好方式实现物理存储计算
本文介绍了一种模拟尖峰神经元,它利用时域信息(即两个信号转换的时间间隔和脉冲宽度)来构建尖峰神经网络(SNN),从而在互补金属氧化物半导体(CMOS)平台上实现硬件友好型物理存储计算(RC)。通过采用两个对内部控制电压具有相反灵敏度的压控振荡器(VCO),实现了具有泄漏积分和发射功能的神经元,并且神经元连接结构受限于在二维平面上仅使用 4 个相邻神经元,以可行地构建规则的网络拓扑结构。这样的系统使我们能够用一个基于计数器的读出电路来组成 SNN,从而简化了 SNN 的硬件实现。此外,自下而上集成的另一个技术优势是能够动态捕捉网络中的每一个神经元状态,这将大大有助于找到如何提高时间信息处理中各种计算任务性能的指导原则。尽管网络结构简单,但 RC 所需的各种非线性物理动态可以通过神经元之间的动态交互来实现,就像耦合振荡器一样。通过行为系统级仿真,我们在短时记忆和排他 OR 任务中演示了物理 RC,在口语数字识别任务中的准确率也达到了 97.7%。我们的系统在实际应用中具有相当大的可行性,也可以成为研究物理 RC 机制的有用平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware-Friendly Implementation of Physical Reservoir Computing with CMOS-based Time-domain Analog Spiking Neurons Self-Contrastive Forward-Forward Algorithm Bio-Inspired Mamba: Temporal Locality and Bioplausible Learning in Selective State Space Models PReLU: Yet Another Single-Layer Solution to the XOR Problem Inferno: An Extensible Framework for Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1