An investigation on the use of Large Language Models for hyperparameter tuning in Evolutionary Algorithms

Leonardo Lucio Custode, Fabio Caraffini, Anil Yaman, Giovanni Iacca
{"title":"An investigation on the use of Large Language Models for hyperparameter tuning in Evolutionary Algorithms","authors":"Leonardo Lucio Custode, Fabio Caraffini, Anil Yaman, Giovanni Iacca","doi":"arxiv-2408.02451","DOIUrl":null,"url":null,"abstract":"Hyperparameter optimization is a crucial problem in Evolutionary Computation.\nIn fact, the values of the hyperparameters directly impact the trajectory taken\nby the optimization process, and their choice requires extensive reasoning by\nhuman operators. Although a variety of self-adaptive Evolutionary Algorithms\nhave been proposed in the literature, no definitive solution has been found. In\nthis work, we perform a preliminary investigation to automate the reasoning\nprocess that leads to the choice of hyperparameter values. We employ two\nopen-source Large Language Models (LLMs), namely Llama2-70b and Mixtral, to\nanalyze the optimization logs online and provide novel real-time hyperparameter\nrecommendations. We study our approach in the context of step-size adaptation\nfor (1+1)-ES. The results suggest that LLMs can be an effective method for\noptimizing hyperparameters in Evolution Strategies, encouraging further\nresearch in this direction.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperparameter optimization is a crucial problem in Evolutionary Computation. In fact, the values of the hyperparameters directly impact the trajectory taken by the optimization process, and their choice requires extensive reasoning by human operators. Although a variety of self-adaptive Evolutionary Algorithms have been proposed in the literature, no definitive solution has been found. In this work, we perform a preliminary investigation to automate the reasoning process that leads to the choice of hyperparameter values. We employ two open-source Large Language Models (LLMs), namely Llama2-70b and Mixtral, to analyze the optimization logs online and provide novel real-time hyperparameter recommendations. We study our approach in the context of step-size adaptation for (1+1)-ES. The results suggest that LLMs can be an effective method for optimizing hyperparameters in Evolution Strategies, encouraging further research in this direction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于在进化算法中使用大型语言模型进行超参数调整的研究
超参数优化是进化计算中的一个关键问题。事实上,超参数的取值直接影响优化过程的轨迹,而它们的选择需要人为操作者进行大量推理。虽然文献中提出了多种自适应进化算法,但至今尚未找到确切的解决方案。在这项工作中,我们进行了一项初步研究,以实现超参数值选择推理过程的自动化。我们采用了两个开源大型语言模型(LLM),即 Llama2-70b 和 Mixtral,对优化日志进行在线分析,并提供新颖的实时超参数建议。我们以 (1+1)-ES 的步长适应为背景研究了我们的方法。结果表明,LLMs 可以成为进化策略中优化超参数的有效方法,从而鼓励了在这一方向上的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware-Friendly Implementation of Physical Reservoir Computing with CMOS-based Time-domain Analog Spiking Neurons Self-Contrastive Forward-Forward Algorithm Bio-Inspired Mamba: Temporal Locality and Bioplausible Learning in Selective State Space Models PReLU: Yet Another Single-Layer Solution to the XOR Problem Inferno: An Extensible Framework for Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1