PENDRAM: Enabling High-Performance and Energy-Efficient Processing of Deep Neural Networks through a Generalized DRAM Data Mapping Policy

Rachmad Vidya Wicaksana Putra, Muhammad Abdullah Hanif, Muhammad Shafique
{"title":"PENDRAM: Enabling High-Performance and Energy-Efficient Processing of Deep Neural Networks through a Generalized DRAM Data Mapping Policy","authors":"Rachmad Vidya Wicaksana Putra, Muhammad Abdullah Hanif, Muhammad Shafique","doi":"arxiv-2408.02412","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks (CNNs), a prominent type of Deep Neural\nNetworks (DNNs), have emerged as a state-of-the-art solution for solving\nmachine learning tasks. To improve the performance and energy efficiency of CNN\ninference, the employment of specialized hardware accelerators is prevalent.\nHowever, CNN accelerators still face performance- and energy-efficiency\nchallenges due to high off-chip memory (DRAM) access latency and energy, which\nare especially crucial for latency- and energy-constrained embedded\napplications. Moreover, different DRAM architectures have different profiles of\naccess latency and energy, thus making it challenging to optimize them for high\nperformance and energy-efficient CNN accelerators. To address this, we present\nPENDRAM, a novel design space exploration methodology that enables\nhigh-performance and energy-efficient CNN acceleration through a generalized\nDRAM data mapping policy. Specifically, it explores the impact of different\nDRAM data mapping policies and DRAM architectures across different CNN\npartitioning and scheduling schemes on the DRAM access latency and energy, then\nidentifies the pareto-optimal design choices. The experimental results show\nthat our DRAM data mapping policy improves the energy-delay-product of DRAM\naccesses in the CNN accelerator over other mapping policies by up to 96%. In\nthis manner, our PENDRAM methodology offers high-performance and\nenergy-efficient CNN acceleration under any given DRAM architectures for\ndiverse embedded AI applications.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"84 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Convolutional Neural Networks (CNNs), a prominent type of Deep Neural Networks (DNNs), have emerged as a state-of-the-art solution for solving machine learning tasks. To improve the performance and energy efficiency of CNN inference, the employment of specialized hardware accelerators is prevalent. However, CNN accelerators still face performance- and energy-efficiency challenges due to high off-chip memory (DRAM) access latency and energy, which are especially crucial for latency- and energy-constrained embedded applications. Moreover, different DRAM architectures have different profiles of access latency and energy, thus making it challenging to optimize them for high performance and energy-efficient CNN accelerators. To address this, we present PENDRAM, a novel design space exploration methodology that enables high-performance and energy-efficient CNN acceleration through a generalized DRAM data mapping policy. Specifically, it explores the impact of different DRAM data mapping policies and DRAM architectures across different CNN partitioning and scheduling schemes on the DRAM access latency and energy, then identifies the pareto-optimal design choices. The experimental results show that our DRAM data mapping policy improves the energy-delay-product of DRAM accesses in the CNN accelerator over other mapping policies by up to 96%. In this manner, our PENDRAM methodology offers high-performance and energy-efficient CNN acceleration under any given DRAM architectures for diverse embedded AI applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PENDRAM:通过通用 DRAM 数据映射策略实现高性能、高能效的深度神经网络处理
卷积神经网络(CNN)是深度神经网络(DNN)的一种重要类型,已成为解决机器学习任务的最先进解决方案。然而,由于芯片外存储器(DRAM)访问延迟和能耗较高,CNN 加速器仍然面临着性能和能效挑战,这对于延迟和能耗受限的嵌入式应用尤为重要。此外,不同的 DRAM 体系结构具有不同的访问延迟和能耗特征,因此要优化它们以实现高性能、高能效的 CNN 加速器具有挑战性。为了解决这个问题,我们提出了一种新颖的设计空间探索方法--PENDRAM,通过通用 DRAM 数据映射策略实现高性能、高能效的 CNN 加速。具体来说,它探索了不同 CNN 分区和调度方案中的不同 DRAM 数据映射策略和 DRAM 架构对 DRAM 访问延迟和能耗的影响,然后确定了帕累托最优设计选择。实验结果表明,与其他映射策略相比,我们的 DRAM 数据映射策略可将 CNN 加速器中 DRAM 访问的能耗-延迟积提高 96%。因此,我们的 PENDRAM 方法可在任何给定的 DRAM 架构下为各种嵌入式人工智能应用提供高性能、高能效的 CNN 加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware-Friendly Implementation of Physical Reservoir Computing with CMOS-based Time-domain Analog Spiking Neurons Self-Contrastive Forward-Forward Algorithm Bio-Inspired Mamba: Temporal Locality and Bioplausible Learning in Selective State Space Models PReLU: Yet Another Single-Layer Solution to the XOR Problem Inferno: An Extensible Framework for Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1