Data-efficient fine-tuning of foundational models for first-principles quality sublimation enthalpies

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL Faraday Discussions Pub Date : 2024-08-09 DOI:10.1039/d4fd00107a
Harveen Kaur, Flaviano Della Pia, Ilyes Batatia, Xavier R. Advincula, Benjamin X. Shi, Jinggang Lan, Gábor Csányi, Angelos Michaelides, Venkat Kapil
{"title":"Data-efficient fine-tuning of foundational models for first-principles quality sublimation enthalpies","authors":"Harveen Kaur, Flaviano Della Pia, Ilyes Batatia, Xavier R. Advincula, Benjamin X. Shi, Jinggang Lan, Gábor Csányi, Angelos Michaelides, Venkat Kapil","doi":"10.1039/d4fd00107a","DOIUrl":null,"url":null,"abstract":"Calculating sublimation enthalpies of molecular crystal polymorphs is relevant to a wide range of technological applications. However, predicting these quantities at first-principles accuracy – even with the aid of machine learning potentials – is a challenge that requires sub-kJ/mol accuracy in the potential energy surface and finite-temperature sampling. We present an accurate and data- efficient protocol for training machine learning interatomic potentials by fine-tuning the foundational MACE-MP-0 model and showcase its capabilities on sublimation enthalpies and physical properties of ice polymorphs. Our approach requires only a few tens of training structures to achieve sub-kJ/mol accuracy in the sublimation enthalpies and sub-1 % error in densities at finite temperature and pressure. Exploiting this data efficiency, we perform preliminary N P T simulations of hexagonal ice at the random phase approximation level and demonstrate a good agreement with experiments. Our results shows promise for finite-temperature modelling of molecular crystals with the accuracy of correlated electronic structure theory methods.","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"93 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4fd00107a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Calculating sublimation enthalpies of molecular crystal polymorphs is relevant to a wide range of technological applications. However, predicting these quantities at first-principles accuracy – even with the aid of machine learning potentials – is a challenge that requires sub-kJ/mol accuracy in the potential energy surface and finite-temperature sampling. We present an accurate and data- efficient protocol for training machine learning interatomic potentials by fine-tuning the foundational MACE-MP-0 model and showcase its capabilities on sublimation enthalpies and physical properties of ice polymorphs. Our approach requires only a few tens of training structures to achieve sub-kJ/mol accuracy in the sublimation enthalpies and sub-1 % error in densities at finite temperature and pressure. Exploiting this data efficiency, we perform preliminary N P T simulations of hexagonal ice at the random phase approximation level and demonstrate a good agreement with experiments. Our results shows promise for finite-temperature modelling of molecular crystals with the accuracy of correlated electronic structure theory methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对第一原理质量升华焓基础模型进行数据高效微调
计算分子晶体多晶体的升华焓与广泛的技术应用息息相关。然而,在第一原理精度下预测这些量--即使借助机器学习势能--是一项挑战,需要势能面和限温采样达到亚千焦/摩尔精度。我们通过微调基础 MACE-MP-0 模型,提出了一种精确且数据高效的机器学习原子间势能训练协议,并展示了其在冰多晶体的升华焓和物理性质方面的能力。我们的方法只需要几十个训练结构,就能在有限温度和压力下实现亚 kJ/mol 的升华焓精度和亚 1 % 的密度误差。利用这种数据效率,我们在随机相近似水平上对六角冰进行了初步的 N P T 模拟,并证明与实验结果吻合。我们的研究结果表明,分子晶体的有限温度建模有望达到相关电子结构理论方法的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Faraday Discussions
Faraday Discussions 化学-物理化学
自引率
0.00%
发文量
259
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
期刊最新文献
Discovering synthesis targets: general discussion. Discovering trends in big data: general discussion. Discovering structure-property correlations: general discussion. Discovering chemical structure: general discussion. Understanding dynamics and mechanisms: general discussion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1