首页 > 最新文献

Faraday Discussions最新文献

英文 中文
Magnetic properties of high-entropy alloy nanostructures: general discussion. 高熵合金纳米结构的磁性能:一般讨论。
IF 3.1 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2026-02-05 DOI: 10.1039/d5fd90065d
Stephan Barcikowski, Brian Cantor, Varun Chaudhary, Sheng Dai, Tushar Gupta, Andrea Kirsch, Tim Kunzmann, Chih-Heng Lee, Alfred Ludwig, Nicola Morley, Alexandre Nominé, Dierk Raabe, Natalia F Shkodich, Dongsheng Wen
{"title":"Magnetic properties of high-entropy alloy nanostructures: general discussion.","authors":"Stephan Barcikowski, Brian Cantor, Varun Chaudhary, Sheng Dai, Tushar Gupta, Andrea Kirsch, Tim Kunzmann, Chih-Heng Lee, Alfred Ludwig, Nicola Morley, Alexandre Nominé, Dierk Raabe, Natalia F Shkodich, Dongsheng Wen","doi":"10.1039/d5fd90065d","DOIUrl":"https://doi.org/10.1039/d5fd90065d","url":null,"abstract":"","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146123237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced structural characterization of high-entropy alloy nanostructures: general discussion. 高熵合金纳米结构的高级结构表征:一般性讨论。
IF 3.1 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2026-01-27 DOI: 10.1039/d5fd90064f
Damien Alloyeau, Hakim Amara, Stephan Barcikowski, Florent Calvo, Marta Campolucci, Brian Cantor, Sheng Dai, Arne De Landsheere, Maria Letizia De Marco, Sae Dieb, Alexander S Eggeman, Jonathan Ruiz Esquius, Andrea Kirsch, Henrik H Kristoffersen, Syrine Krouna, Chih-Heng Lee, Tong Li, Alfred Ludwig, Jaysen Nelayah, Tobias Mølgaard Nielsen, Micha Polak, Natalia Pukhareva, Jan Rossmeisl, Wolfgang Schuhmann, Conrard Giresse Tetsassi Feugmo, Jyotishraj Thoudam, Michael Widom, Dongshuang Wu
{"title":"Advanced structural characterization of high-entropy alloy nanostructures: general discussion.","authors":"Damien Alloyeau, Hakim Amara, Stephan Barcikowski, Florent Calvo, Marta Campolucci, Brian Cantor, Sheng Dai, Arne De Landsheere, Maria Letizia De Marco, Sae Dieb, Alexander S Eggeman, Jonathan Ruiz Esquius, Andrea Kirsch, Henrik H Kristoffersen, Syrine Krouna, Chih-Heng Lee, Tong Li, Alfred Ludwig, Jaysen Nelayah, Tobias Mølgaard Nielsen, Micha Polak, Natalia Pukhareva, Jan Rossmeisl, Wolfgang Schuhmann, Conrard Giresse Tetsassi Feugmo, Jyotishraj Thoudam, Michael Widom, Dongshuang Wu","doi":"10.1039/d5fd90064f","DOIUrl":"https://doi.org/10.1039/d5fd90064f","url":null,"abstract":"","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146049542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of high-entropy alloy nanostructures in electrocatalysis: general discussion. 高熵合金纳米结构在电催化中的应用:综述。
IF 3.1 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2026-01-22 DOI: 10.1039/d5fd90063h
Damien Alloyeau, Stephan Barcikowski, Brian Cantor, Sheng Dai, Sae Dieb, Arne De Landsheere, Maria Letizia De Marco, Alexander S Eggeman, Henrik H Kristoffersen, Tim Kunzmann, Chih-Heng Lee, Menglong Liu, Alfred Ludwig, Hossein Mahdavi, Andy Mount, Tobias Mølgaard Nielsen, Micha Polak, Christoph Rehbock, Jan Rossmeisl, Jonathan Ruiz Esquius, Wolfgang Schuhmann, Carsten Schwandt, Anurag Sharma, Natalia F Shkodich, Robert Stuckert, Conrard Giresse Tetsassi Feugmo, Felix Thelen, Jyotishraj Thoudam, Dongshuang Wu
{"title":"Application of high-entropy alloy nanostructures in electrocatalysis: general discussion.","authors":"Damien Alloyeau, Stephan Barcikowski, Brian Cantor, Sheng Dai, Sae Dieb, Arne De Landsheere, Maria Letizia De Marco, Alexander S Eggeman, Henrik H Kristoffersen, Tim Kunzmann, Chih-Heng Lee, Menglong Liu, Alfred Ludwig, Hossein Mahdavi, Andy Mount, Tobias Mølgaard Nielsen, Micha Polak, Christoph Rehbock, Jan Rossmeisl, Jonathan Ruiz Esquius, Wolfgang Schuhmann, Carsten Schwandt, Anurag Sharma, Natalia F Shkodich, Robert Stuckert, Conrard Giresse Tetsassi Feugmo, Felix Thelen, Jyotishraj Thoudam, Dongshuang Wu","doi":"10.1039/d5fd90063h","DOIUrl":"https://doi.org/10.1039/d5fd90063h","url":null,"abstract":"","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146016754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesizing high-entropy alloy nanoparticles: general discussion. 高熵合金纳米颗粒的合成:综述。
IF 3.1 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2026-01-21 DOI: 10.1039/d5fd90062j
Damien Alloyeau, Hakim Amara, Stephan Barcikowski, Marta Campolucci, Brian Cantor, Varun Chaudhary, Sheng Dai, Arne De Landsheere, Alexander S Eggeman, Mark Feaviour, Larissa M Feitosa, Divyansh Gautam, Tushar Gupta, Andrew L Hector, J Sharath Kumar, Chih-Heng Lee, Tong Li, Alfred Ludwig, Jette K Mathiesen, Andrew R Mount, Megumi Mukoyoshi, Tobias Mølgaard Nielsen, Micha Polak, Christoph Rehbock, Jonathan Ruiz Esquius, Wolfgang Schuhmann, Anurag Sharma, Robert Stuckert, Felix Thelen, Jyotishraj Thoudam, Robert Weatherup
{"title":"Synthesizing high-entropy alloy nanoparticles: general discussion.","authors":"Damien Alloyeau, Hakim Amara, Stephan Barcikowski, Marta Campolucci, Brian Cantor, Varun Chaudhary, Sheng Dai, Arne De Landsheere, Alexander S Eggeman, Mark Feaviour, Larissa M Feitosa, Divyansh Gautam, Tushar Gupta, Andrew L Hector, J Sharath Kumar, Chih-Heng Lee, Tong Li, Alfred Ludwig, Jette K Mathiesen, Andrew R Mount, Megumi Mukoyoshi, Tobias Mølgaard Nielsen, Micha Polak, Christoph Rehbock, Jonathan Ruiz Esquius, Wolfgang Schuhmann, Anurag Sharma, Robert Stuckert, Felix Thelen, Jyotishraj Thoudam, Robert Weatherup","doi":"10.1039/d5fd90062j","DOIUrl":"https://doi.org/10.1039/d5fd90062j","url":null,"abstract":"","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146008107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Concluding remarks: Achievements, challenges, and trajectories for high-entropy alloy nanoparticles. 结束语:高熵合金纳米颗粒的成就、挑战和发展轨迹。
IF 3.1 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2026-01-14 DOI: 10.1039/d5fd00123d
Dierk Raabe
<p><p>The field of high-entropy alloy nanoparticles (HEA-NPs) had to move and indeed has moved beyond the early enthusiasm of simply "mixing five or more elements and hoping the configurational entropy will do some magic" in terms of chemical and physical properties. What the 2025 <i>Faraday Discussion</i> made clear is that, at the nanoscale, entropy is often a minor player. Phase stability, structure, and functional properties are instead dominated by kinetics, surface reconstruction, defects, segregation, decomposition, and - more often than we like to admit - (unnoticed) interstitial contamination (C, O, N, H, B, S) picked up during synthesis and during particle exposure to "real-world" environments. Bulk HEAs can still "hide" a bit behind their mostly metastable single-phase character and complex diffusion mechanisms, and often even exploit these features to their advantage, but nanoparticles have no such luxury. Their huge surface-to-volume ratio, rapid synthesis pathways, and exposure to harsh operational environments reveal the true thermodynamic and kinetic transient features of most reported compositions. We see decomposition, demixing, surface reconstruction, and dynamic ensemble behaviour that have in part little to do with the ideal solid-solution picture painted a decade ago. These profound differences between bulk HEAs and nanosized ones provide opportunities to be embraced and exploited for well-targeted and theory-guided development steps. The community therefore should feel encouraged to pivot. Instead of chasing ever more complex average compositions, we must focus on what really governs the usually transient features and stability of these particles, particularly at the surface and their dynamical states in real environments, and how we can deliberately exploit kinetic barriers, short-range ordering, defects and their chemical decoration, and surface dynamics to achieve emergent properties unattainable in conventional nanoscale alloys. Theory and simulation must leave the <i>O</i>(<i>N</i><sup>3</sup>) constraints of traditional DFT behind and embrace large-scale, accurate machine-learning potentials and property-driven screening of the astronomical configuration space. Synthesis has to become far more chemically aware and reproducible, with rigorous control (and transparent reporting) of interstitials, decomposition and decay kinetics when the particles are used. And finally, functional validation can no longer rely on post-mortem snapshots; we need genuine <i>operando</i> insight into displaced reaction features, ordering, dynamical reconstruction, composition, and dynamics of those atomic clusters that actually do the catalytic or magnetic work. If we accept that HEA nanoparticles are inherently kinetically highly variable, defect-rich, surface-dominated objects, then more adequate design metrics need to be found, going beyond the so far primarily used single mean-field metric of configurational (bulk) entropy. This could o
高熵合金纳米颗粒(HEA-NPs)领域必须改变,而且确实已经超越了早期的热情,即简单地“混合五种或五种以上的元素,希望构型熵能在化学和物理性质方面创造一些奇迹”。2025年的法拉第讨论清楚地表明,在纳米尺度上,熵通常是一个次要角色。相反,相稳定性、结构和功能特性主要受动力学、表面重构、缺陷、偏析、分解以及(通常比我们愿意承认的)在合成和粒子暴露于“现实世界”环境中获得的(未被注意到的)间隙污染(C、O、N、H、B、S)的影响。大块HEAs仍然可以“隐藏”在它们大部分亚稳的单相特性和复杂的扩散机制背后,甚至经常利用这些特性来发挥它们的优势,但纳米颗粒没有这样的奢侈。它们巨大的表面体积比,快速的合成途径,以及暴露在恶劣的操作环境中,揭示了大多数已报道的组合物的真实热力学和动力学瞬态特征。我们看到的分解、解混、表面重建和动态系综行为,在一定程度上与十年前描绘的理想固溶体图景没有什么关系。大块HEAs和纳米级HEAs之间的这些深刻差异为有针对性和理论指导的开发步骤提供了机会。因此,应该鼓励社区转向。与其追求更复杂的平均成分,我们必须专注于真正控制这些颗粒的通常瞬态特征和稳定性的因素,特别是在真实环境中的表面和它们的动态状态,以及我们如何有意识地利用动力学障碍、短程有序、缺陷及其化学修饰和表面动力学来实现传统纳米级合金无法实现的新特性。理论和模拟必须摆脱传统DFT的0 (N3)约束,并拥抱大规模、准确的机器学习潜力和属性驱动的天文构型空间筛选。合成必须变得更加具有化学意识和可重复性,并在使用颗粒时对间隙、分解和衰变动力学进行严格控制(和透明报告)。最后,功能验证不能再依赖于事后快照;我们需要对置换反应的特征,排序,动态重建,组成,以及那些实际起催化或磁性作用的原子团簇的动力学有真正的歌剧般的洞察力。如果我们接受HEA纳米颗粒本质上是动力学高度可变的、缺陷丰富的、表面主导的物体,那么就需要找到更充分的设计指标,而不是迄今为止主要使用的单一平均场构型(体积)熵指标。这可能为真正的纳米粒子多功能性和现实世界的稳定性开辟一条更系统、更现实、更全面的设计途径。在2025年法拉第讨论会上发表的论文表明,沿着这条路线发展的机会可能潜伏在磁性活性催化剂、贵金属贫电催化剂或集耐腐蚀性、热稳定性和高活性于一体的材料领域。前面的道路是艰巨的,但更可持续的催化和磁性应用的潜在回报是很高的。这可以归结为,现在是时候停止将高熵纳米粒子仅仅视为“小型化”的体HEAs,而开始将它们视为真正迷人的新材料了。
{"title":"Concluding remarks: Achievements, challenges, and trajectories for high-entropy alloy nanoparticles.","authors":"Dierk Raabe","doi":"10.1039/d5fd00123d","DOIUrl":"https://doi.org/10.1039/d5fd00123d","url":null,"abstract":"&lt;p&gt;&lt;p&gt;The field of high-entropy alloy nanoparticles (HEA-NPs) had to move and indeed has moved beyond the early enthusiasm of simply \"mixing five or more elements and hoping the configurational entropy will do some magic\" in terms of chemical and physical properties. What the 2025 &lt;i&gt;Faraday Discussion&lt;/i&gt; made clear is that, at the nanoscale, entropy is often a minor player. Phase stability, structure, and functional properties are instead dominated by kinetics, surface reconstruction, defects, segregation, decomposition, and - more often than we like to admit - (unnoticed) interstitial contamination (C, O, N, H, B, S) picked up during synthesis and during particle exposure to \"real-world\" environments. Bulk HEAs can still \"hide\" a bit behind their mostly metastable single-phase character and complex diffusion mechanisms, and often even exploit these features to their advantage, but nanoparticles have no such luxury. Their huge surface-to-volume ratio, rapid synthesis pathways, and exposure to harsh operational environments reveal the true thermodynamic and kinetic transient features of most reported compositions. We see decomposition, demixing, surface reconstruction, and dynamic ensemble behaviour that have in part little to do with the ideal solid-solution picture painted a decade ago. These profound differences between bulk HEAs and nanosized ones provide opportunities to be embraced and exploited for well-targeted and theory-guided development steps. The community therefore should feel encouraged to pivot. Instead of chasing ever more complex average compositions, we must focus on what really governs the usually transient features and stability of these particles, particularly at the surface and their dynamical states in real environments, and how we can deliberately exploit kinetic barriers, short-range ordering, defects and their chemical decoration, and surface dynamics to achieve emergent properties unattainable in conventional nanoscale alloys. Theory and simulation must leave the &lt;i&gt;O&lt;/i&gt;(&lt;i&gt;N&lt;/i&gt;&lt;sup&gt;3&lt;/sup&gt;) constraints of traditional DFT behind and embrace large-scale, accurate machine-learning potentials and property-driven screening of the astronomical configuration space. Synthesis has to become far more chemically aware and reproducible, with rigorous control (and transparent reporting) of interstitials, decomposition and decay kinetics when the particles are used. And finally, functional validation can no longer rely on post-mortem snapshots; we need genuine &lt;i&gt;operando&lt;/i&gt; insight into displaced reaction features, ordering, dynamical reconstruction, composition, and dynamics of those atomic clusters that actually do the catalytic or magnetic work. If we accept that HEA nanoparticles are inherently kinetically highly variable, defect-rich, surface-dominated objects, then more adequate design metrics need to be found, going beyond the so far primarily used single mean-field metric of configurational (bulk) entropy. This could o","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145964586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preface: High-entropy alloy nanostructures: from theory to application. 前言:高熵合金纳米结构:从理论到应用。
IF 3.1 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-12-23 DOI: 10.1039/d5fd90050f
Jette Katja Mathiesen, Stephan Barcikowski

Few areas of materials science have evolved as rapidly and dynamically as high-entropy alloys (HEAs). What began just two decades ago as a bold idea - first articulated by Brian Cantor and Jien-Wei Yeh - that chemical complexity itself could stabilise materials, has grown into a thriving research field spanning structural, functional, and catalytic applications. The Faraday Discussions 'High-entropy alloy nanostructures: from theory to application', held at the Royal Society of Chemistry in London, brought together researchers from across the world to examine a fundamental question at the heart of this concept: with multicomponent alloys now within reach, do they truly deliver beyond simpler systems, or does complexity risk obscuring purpose?

材料科学中很少有领域像高熵合金(HEAs)那样发展得如此迅速和动态。20年前,Brian Cantor和Jien-Wei Yeh首先提出了一个大胆的想法,即化学复杂性本身可以稳定材料,现在已经发展成为一个跨越结构、功能和催化应用的蓬勃研究领域。在伦敦皇家化学学会举行的法拉第讨论“高熵合金纳米结构:从理论到应用”汇集了来自世界各地的研究人员来研究这个概念核心的一个基本问题:随着多组分合金现在已经可以实现,它们是否真的能超越更简单的系统,或者复杂性是否会掩盖目的?
{"title":"Preface: High-entropy alloy nanostructures: from theory to application.","authors":"Jette Katja Mathiesen, Stephan Barcikowski","doi":"10.1039/d5fd90050f","DOIUrl":"https://doi.org/10.1039/d5fd90050f","url":null,"abstract":"<p><p>Few areas of materials science have evolved as rapidly and dynamically as high-entropy alloys (HEAs). What began just two decades ago as a bold idea - first articulated by Brian Cantor and Jien-Wei Yeh - that chemical complexity itself could stabilise materials, has grown into a thriving research field spanning structural, functional, and catalytic applications. The <i>Faraday Discussions</i> 'High-entropy alloy nanostructures: from theory to application', held at the Royal Society of Chemistry in London, brought together researchers from across the world to examine a fundamental question at the heart of this concept: with multicomponent alloys now within reach, do they truly deliver beyond simpler systems, or does complexity risk obscuring purpose?</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145808999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the use of advanced scanning transmission electron microscopy and machine learning for studying multi-component materials. 利用先进的扫描透射电子显微镜和机器学习技术研究多组分材料。
IF 3.1 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-11-12 DOI: 10.1039/d5fd00101c
Alexander S Eggeman, Christian Maddox, Mark A Buckingham, Zhiquan Kho, Ran Eitan Abutbul, Siguang Meng, Xu Aiwanshu, David J Lewis

The nanoscale distribution of elements in two multi-component materials is assessed by unsupervised machine learning methods. These are compared to elemental maps to highlight the potential shortcomings of simplistic compositional analyses. Quantification of the resulting microstructure components provides insight into the evolution of the microstructure and the possible reasons for misinterpretation of the traditional element maps.

采用无监督机器学习方法对两种多组分材料中元素的纳米级分布进行了评估。将这些图与元素图进行比较,以突出简单成分分析的潜在缺点。由此产生的微观结构成分的量化提供了对微观结构演变的洞察以及对传统元素图的误解的可能原因。
{"title":"On the use of advanced scanning transmission electron microscopy and machine learning for studying multi-component materials.","authors":"Alexander S Eggeman, Christian Maddox, Mark A Buckingham, Zhiquan Kho, Ran Eitan Abutbul, Siguang Meng, Xu Aiwanshu, David J Lewis","doi":"10.1039/d5fd00101c","DOIUrl":"https://doi.org/10.1039/d5fd00101c","url":null,"abstract":"<p><p>The nanoscale distribution of elements in two multi-component materials is assessed by unsupervised machine learning methods. These are compared to elemental maps to highlight the potential shortcomings of simplistic compositional analyses. Quantification of the resulting microstructure components provides insight into the evolution of the microstructure and the possible reasons for misinterpretation of the traditional element maps.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145493917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical responses from high-entropy alloys: experimental results and perspectives. 高熵合金的光学响应:实验结果和观点。
IF 3.1 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-10-30 DOI: 10.1039/d5fd00086f
Alexandre Nominé, Alexander I Solomonov, Juš Polanšek, Maxime Vergès, Yann Battie, Stéphanie Bruyère, Jaafar Ghanbaja, Jean-François Pierson, Janez Zavašnik, Michael Feuerbacher, Uroš Cvelbar, Thierry Belmonte, Valentin Milichko

High-entropy alloys (HEAs) combine five or more elements in near-equiatomic ratios, opening an immense compositional space whose optical behaviour is still largely unknown. Phase-modulated ellipsometry on bulk CrMnFeCoNi (Cantor) shows that its intrinsic optical constants, n, k, ε1 and ε2, deviate strongly from the arithmetic means of the constituent elements-by up to a factor of two beyond 1 μm-yet the derived functional responses, reflectance R and absorption coefficient α, are reproduced to within ∼20%. Cantor nanoparticles have been produced by nanosecond electric discharges in liquid nitrogen. Dark-field spectroscopy and Mie calculations reveal a dominant scattering mode near 100 nm that red-shifts and broadens with increasing size; the steady-state photothermal rise calculated from the absorption cross-section σabs falls between those of the constituent pure metals. Generalising the averaging rule, we compute proxy values of R and α for 10 994 density-functional-theory-predicted HEAs. Successive optical, thermal and resource filters condense the space to 58 candidates at 355 nm and eight refractory alloys at 1064 nm, illustrating a "sustainable-by-design" route for future HEA photonics.

高熵合金(HEAs)将五种或五种以上的元素以接近等原子的比例结合在一起,打开了一个巨大的组成空间,其光学行为在很大程度上仍然未知。在块状crmnnfeconi (Cantor)上进行的相位调制椭偏测量表明,其本征光学常数n、k、ε1和ε2与组成元素的算术平均值相差很大,误差在1 μm以上达2倍,但推导出的功能响应,反射率R和吸收系数α,可复制到20%以内。在液氮中进行纳秒级放电制备了康托纳米粒子。暗场光谱和Mie计算表明,100 nm附近的主要散射模式随着尺寸的增加而红移和变宽;由吸收截面σabs计算的稳态光热升介于组成纯金属之间。推广平均规则,我们计算了10 994密度泛函理论预测的HEAs的R和α的代理值。连续的光学、热和资源过滤器将空间压缩到58个355nm的候选材料和8个1064nm的耐火合金,说明了未来HEA光子学的“可持续设计”路线。
{"title":"Optical responses from high-entropy alloys: experimental results and perspectives.","authors":"Alexandre Nominé, Alexander I Solomonov, Juš Polanšek, Maxime Vergès, Yann Battie, Stéphanie Bruyère, Jaafar Ghanbaja, Jean-François Pierson, Janez Zavašnik, Michael Feuerbacher, Uroš Cvelbar, Thierry Belmonte, Valentin Milichko","doi":"10.1039/d5fd00086f","DOIUrl":"10.1039/d5fd00086f","url":null,"abstract":"<p><p>High-entropy alloys (HEAs) combine five or more elements in near-equiatomic ratios, opening an immense compositional space whose optical behaviour is still largely unknown. Phase-modulated ellipsometry on bulk CrMnFeCoNi (Cantor) shows that its intrinsic optical constants, <i>n</i>, <i>k</i>, <i>ε</i><sub>1</sub> and <i>ε</i><sub>2</sub>, deviate strongly from the arithmetic means of the constituent elements-by up to a factor of two beyond 1 μm-yet the derived functional responses, reflectance <i>R</i> and absorption coefficient <i>α</i>, are reproduced to within ∼20%. Cantor nanoparticles have been produced by nanosecond electric discharges in liquid nitrogen. Dark-field spectroscopy and Mie calculations reveal a dominant scattering mode near 100 nm that red-shifts and broadens with increasing size; the steady-state photothermal rise calculated from the absorption cross-section <i>σ</i><sub>abs</sub> falls between those of the constituent pure metals. Generalising the averaging rule, we compute proxy values of <i>R</i> and <i>α</i> for 10 994 density-functional-theory-predicted HEAs. Successive optical, thermal and resource filters condense the space to 58 candidates at 355 nm and eight refractory alloys at 1064 nm, illustrating a \"sustainable-by-design\" route for future HEA photonics.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145399192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of microstructure and phase formation in nanocrystalline FeCoCuNbMo high-entropy alloy synthesised by mechanical alloying. 机械合金化合成纳米晶FeCoCuNbMo高熵合金的显微组织和相形成评价。
IF 3.1 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-10-27 DOI: 10.1039/d5fd00085h
J Sharath Kumar, K Nanda Kishore, Rakesh Kumar, Rajeev Verma

High entropy alloys (HEAs) have gained significant attention in materials science and engineering due to their stable phases. These alloys are made up of five or more major elements in equimolar or near-equimolar proportions, enabling them to harness the properties of multiple elements rather than depending on a single one. In this study, nanocrystalline FeCoCuNbMo high-entropy alloy powders were synthesised via the mechanical alloying method with high-energy SPEX ball milling. The microstructures and crystal properties of the milled powders at regular intervals of milling were investigated through X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM). XRD analysis revealed the BCC phase formation after 20 hours of milling. A study of diffraction patterns was conducted to find out the average crystallite size and internal strains, utilising Scherrer's formula and Williamson-Hall analysis, based on a uniform deformation model. Additionally, changes in particle size as a function of milling time were studied using nano zeta potential analysis. As milling time increased, the crystallite sizes decreased due to dislocations and stacking faults in the crystals, and nano-crystalline structure formations were observed after 20 h of milling.

高熵合金由于其稳定的相特性,在材料科学和工程领域受到了广泛的关注。这些合金由五种或更多等摩尔或近等摩尔比例的主要元素组成,使它们能够利用多种元素的特性,而不是依赖于单一元素。本研究采用高能SPEX球磨机械合金化法制备了纳米晶FeCoCuNbMo高熵合金粉末。利用x射线衍射仪(XRD)和场发射扫描电镜(FESEM)研究了在一定时间间隔内磨成的粉末的微观结构和晶体性能。XRD分析表明,磨矿20小时后形成了BCC相。在均匀变形模型的基础上,利用Scherrer公式和Williamson-Hall分析,对衍射图进行了研究,以找出平均晶粒尺寸和内部应变。此外,利用纳米zeta电位分析研究了颗粒尺寸随磨矿时间的变化。随着磨矿时间的延长,由于晶体中的位错和层错,晶粒尺寸减小,在磨矿20 h后形成纳米晶结构。
{"title":"Evaluation of microstructure and phase formation in nanocrystalline FeCoCuNbMo high-entropy alloy synthesised by mechanical alloying.","authors":"J Sharath Kumar, K Nanda Kishore, Rakesh Kumar, Rajeev Verma","doi":"10.1039/d5fd00085h","DOIUrl":"10.1039/d5fd00085h","url":null,"abstract":"<p><p>High entropy alloys (HEAs) have gained significant attention in materials science and engineering due to their stable phases. These alloys are made up of five or more major elements in equimolar or near-equimolar proportions, enabling them to harness the properties of multiple elements rather than depending on a single one. In this study, nanocrystalline FeCoCuNbMo high-entropy alloy powders were synthesised <i>via</i> the mechanical alloying method with high-energy SPEX ball milling. The microstructures and crystal properties of the milled powders at regular intervals of milling were investigated through X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM). XRD analysis revealed the BCC phase formation after 20 hours of milling. A study of diffraction patterns was conducted to find out the average crystallite size and internal strains, utilising Scherrer's formula and Williamson-Hall analysis, based on a uniform deformation model. Additionally, changes in particle size as a function of milling time were studied using nano zeta potential analysis. As milling time increased, the crystallite sizes decreased due to dislocations and stacking faults in the crystals, and nano-crystalline structure formations were observed after 20 h of milling.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145372224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-throughput synthesis of multi-element alloy nanoparticles using solvothermal continuous-flow reactor. 溶剂热连续流反应器高通量合成多元素合金纳米颗粒。
IF 3.1 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-10-27 DOI: 10.1039/d5fd00103j
Megumi Mukoyoshi, Kohei Kusada, Xin Zhou, Takaaki Toriyama, Tomokazu Yamamoto, Yasukazu Murakami, Hiroshi Kitagawa

High-throughput synthesis of multi-element alloy nanoparticles (MEA NPs) is essential for accelerating the discovery of advanced materials with complex compositions. Herein, we developed an automated continuous-flow reactor system capable of synthesising a wide variety of MEA NPs under controlled solvothermal conditions (up to 400 °C and 35 MPa). The system demonstrates a high screening throughput, capable of preparing up to 20 distinct samples in a single, automated run, with each synthesis requiring only 30 minutes. A key throughput optimising feature is the parallel process execution, whereby precursor preparation and system cleaning are performed concurrently via the reactor heating, synthesis, and cooling cycles. All washing procedures, for both the precursor preparation module and reactor unit, are fully automated, further minimising downtime. We demonstrated its versatility by successfully synthesising a wide range of MEA NPs, including high-entropy alloys, composed of various combinations of d- and p-block metals. The synthesized materials, ranging from bimetallic RuPd to ten-element CoNiCuRuRhPdInSnIrPt alloys, were all crystalline, single-phase face-centred cubic solid solutions. Furthermore, the platform enables the direct one-step synthesis of supported MEA catalysts, such as RuRhPdIrPt/CeO2. For this supported catalyst, we achieved a practical mass throughput with a theoretical production rate of 0.5 g h-1 for the MEA NPs (corresponding to 27 g h-1 for the total catalyst including the support). The final product yield was approximately 56% under the current protocol, which is designed to prevent cross-contamination by automatically discarding the initial and final portions of the product slurry. We anticipate this yield can be readily improved in a system configuration optimized for mass throughput rather than for high-throughput screening. This study presents a scalable and versatile system for high-throughput MEA NPs synthesis and offers a practical solution for bridging the gap between computational predictions and experimental materials development.

高通量合成多元素合金纳米颗粒(MEA NPs)对于加速发现具有复杂成分的先进材料至关重要。在此,我们开发了一种自动化连续流反应器系统,能够在受控溶剂热条件下(高达400°C和35 MPa)合成各种MEA NPs。该系统具有很高的筛选通量,能够在单次自动运行中制备多达20种不同的样品,每次合成仅需30分钟。一个关键的吞吐量优化特征是并行过程执行,通过反应器加热、合成和冷却循环同时执行前驱体制备和系统清洗。前驱体制备模块和反应器单元的所有洗涤程序都是全自动的,进一步减少了停机时间。我们成功地合成了多种MEA NPs,包括由d-和p-嵌段金属的各种组合组成的高熵合金,证明了它的多功能性。合成的材料,从双金属的RuPd到十元素的CoNiCuRuRhPdInSnIrPt合金,都是结晶的单相面心立方固溶体。此外,该平台还可以直接一步合成负载型MEA催化剂,如RuRhPdIrPt/CeO2。对于这种负载催化剂,我们实现了MEA NPs的实际质量吞吐量,理论产量为0.5 g h-1(对应于包括载体在内的总催化剂的27 g h-1)。在目前的方案下,最终产品收率约为56%,该方案旨在通过自动丢弃产品浆的初始和最终部分来防止交叉污染。我们预计,这种产率可以很容易地提高在系统配置优化为大通量,而不是高通量筛选。本研究提出了一个可扩展和通用的高通量MEA NPs合成系统,并为弥合计算预测和实验材料开发之间的差距提供了一个实用的解决方案。
{"title":"High-throughput synthesis of multi-element alloy nanoparticles using solvothermal continuous-flow reactor.","authors":"Megumi Mukoyoshi, Kohei Kusada, Xin Zhou, Takaaki Toriyama, Tomokazu Yamamoto, Yasukazu Murakami, Hiroshi Kitagawa","doi":"10.1039/d5fd00103j","DOIUrl":"10.1039/d5fd00103j","url":null,"abstract":"<p><p>High-throughput synthesis of multi-element alloy nanoparticles (MEA NPs) is essential for accelerating the discovery of advanced materials with complex compositions. Herein, we developed an automated continuous-flow reactor system capable of synthesising a wide variety of MEA NPs under controlled solvothermal conditions (up to 400 °C and 35 MPa). The system demonstrates a high screening throughput, capable of preparing up to 20 distinct samples in a single, automated run, with each synthesis requiring only 30 minutes. A key throughput optimising feature is the parallel process execution, whereby precursor preparation and system cleaning are performed concurrently <i>via</i> the reactor heating, synthesis, and cooling cycles. All washing procedures, for both the precursor preparation module and reactor unit, are fully automated, further minimising downtime. We demonstrated its versatility by successfully synthesising a wide range of MEA NPs, including high-entropy alloys, composed of various combinations of d- and p-block metals. The synthesized materials, ranging from bimetallic RuPd to ten-element CoNiCuRuRhPdInSnIrPt alloys, were all crystalline, single-phase face-centred cubic solid solutions. Furthermore, the platform enables the direct one-step synthesis of supported MEA catalysts, such as RuRhPdIrPt/CeO<sub>2</sub>. For this supported catalyst, we achieved a practical mass throughput with a theoretical production rate of 0.5 g h<sup>-1</sup> for the MEA NPs (corresponding to 27 g h<sup>-1</sup> for the total catalyst including the support). The final product yield was approximately 56% under the current protocol, which is designed to prevent cross-contamination by automatically discarding the initial and final portions of the product slurry. We anticipate this yield can be readily improved in a system configuration optimized for mass throughput rather than for high-throughput screening. This study presents a scalable and versatile system for high-throughput MEA NPs synthesis and offers a practical solution for bridging the gap between computational predictions and experimental materials development.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145375448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Faraday Discussions
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1