Synthetic Aperture Sonar Interferogram Filtering by Intensity Image Segmentation

IF 3.8 2区 工程技术 Q1 ENGINEERING, CIVIL IEEE Journal of Oceanic Engineering Pub Date : 2024-06-03 DOI:10.1109/JOE.2024.3374465
Ole Jacob Lorentzen;Torstein Olsmo Sæbø;Alan J. Hunter;Roy Edgar Hansen
{"title":"Synthetic Aperture Sonar Interferogram Filtering by Intensity Image Segmentation","authors":"Ole Jacob Lorentzen;Torstein Olsmo Sæbø;Alan J. Hunter;Roy Edgar Hansen","doi":"10.1109/JOE.2024.3374465","DOIUrl":null,"url":null,"abstract":"Synthetic aperture sonar interferometry relies on the interferogram of two single look complex images to estimate bathymetry. The phase difference measurements have variance, which is typically reduced by spatial smoothing at the cost of horizontal resolution. The high resolution intensity image is related to the bathymetry because of the observation geometry. We therefore suggest an approach that constrains the filtering around edges found by intensity image segmentation. We demonstrate our suggested method on simulated data and show quantitative and qualitative improvements in both the horizontal resolution and the shape resolvability of small objects. We demonstrate a 30% improvement in RMSE of the bathymetric estimate, and observe that the estimated bathymetry more closely renders the real object shape for a small, but elevated object. We demonstrate our suggested method on real data and show similar results.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"49 4","pages":"1516-1529"},"PeriodicalIF":3.8000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10545427","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10545427/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic aperture sonar interferometry relies on the interferogram of two single look complex images to estimate bathymetry. The phase difference measurements have variance, which is typically reduced by spatial smoothing at the cost of horizontal resolution. The high resolution intensity image is related to the bathymetry because of the observation geometry. We therefore suggest an approach that constrains the filtering around edges found by intensity image segmentation. We demonstrate our suggested method on simulated data and show quantitative and qualitative improvements in both the horizontal resolution and the shape resolvability of small objects. We demonstrate a 30% improvement in RMSE of the bathymetric estimate, and observe that the estimated bathymetry more closely renders the real object shape for a small, but elevated object. We demonstrate our suggested method on real data and show similar results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过强度图像分割进行合成孔径声纳干涉图滤波
合成孔径声纳干涉测量法依靠两幅单一外观复杂图像的干涉图来估算水深。相位差测量值有方差,通常通过空间平滑来减少方差,但会牺牲水平分辨率。由于观测几何学的原因,高分辨率的强度图像与水深测量有关。因此,我们建议采用一种方法,对强度图像分割发现的边缘进行过滤。我们在模拟数据上演示了所建议的方法,结果表明在水平分辨率和小物体形状的可分辨性方面都有了定量和定性的改进。我们证明水深估计值的均方根误差(RMSE)提高了 30%,并观察到估计的水深更接近小而高的物体的真实形状。我们在真实数据上演示了我们建议的方法,并显示了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Journal of Oceanic Engineering
IEEE Journal of Oceanic Engineering 工程技术-工程:大洋
CiteScore
9.60
自引率
12.20%
发文量
86
审稿时长
12 months
期刊介绍: The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.
期刊最新文献
JOE Call for Papers - Special Issue on Maritime Informatics and Robotics: Advances from the IEEE Symposium on Maritime Informatics & Robotics JOE Call for Papers - Special Issue on the IEEE 2026 AUV Symposium Fairness-Driven Optimization for NOMA-UWOC Systems With Energy Harvesting Requirements Hybrid Modeling Based Semantic Segmentation of Forward-Looking Sonar Images Large-Scale Dense 3-D Mapping Using Submaps Derived From Orthogonal Imaging Sonars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1