Energy expansion planning with a human evolutionary model

Q2 Energy Energy Informatics Pub Date : 2024-08-05 DOI:10.1186/s42162-024-00371-x
Hosein Farokhzad Rostami, Mahmoud Samiei Moghaddam, Mehdi Radmehr, Reza Ebrahimi
{"title":"Energy expansion planning with a human evolutionary model","authors":"Hosein Farokhzad Rostami,&nbsp;Mahmoud Samiei Moghaddam,&nbsp;Mehdi Radmehr,&nbsp;Reza Ebrahimi","doi":"10.1186/s42162-024-00371-x","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a novel method for planning the expansion of transmission lines and energy storage systems while considering the interconnectedness of electricity and gas networks. We developed a two-level stochastic planning model that addresses both the expansion of transmission and battery systems in the electrical grid and the behavior of the gas network. This research explores the challenges and effects of integrating high levels of renewable energy sources while ensuring security within both networks. Our model uses a stochastic mixed-integer non-linear programming approach. To solve this complex model, we applied the Human Evolutionary Model (HEM). We tested our approach on two case studies: a simple 6-node network and the more complex IEEE RTS 24-bus network for the electricity grid, combined with 5-node and 10-node gas networks, respectively. The results demonstrate the effectiveness of our model, particularly in scenarios where connections in the power and gas networks are disrupted, preventing load shedding even when integrated network connections are cut.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s42162-024-00371-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00371-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel method for planning the expansion of transmission lines and energy storage systems while considering the interconnectedness of electricity and gas networks. We developed a two-level stochastic planning model that addresses both the expansion of transmission and battery systems in the electrical grid and the behavior of the gas network. This research explores the challenges and effects of integrating high levels of renewable energy sources while ensuring security within both networks. Our model uses a stochastic mixed-integer non-linear programming approach. To solve this complex model, we applied the Human Evolutionary Model (HEM). We tested our approach on two case studies: a simple 6-node network and the more complex IEEE RTS 24-bus network for the electricity grid, combined with 5-node and 10-node gas networks, respectively. The results demonstrate the effectiveness of our model, particularly in scenarios where connections in the power and gas networks are disrupted, preventing load shedding even when integrated network connections are cut.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人类进化模型进行能源扩张规划
本研究提出了一种新方法,用于规划输电线路和储能系统的扩展,同时考虑电力和天然气网络的互联性。我们开发了一个两级随机规划模型,既能解决电网中输电和电池系统的扩展问题,也能解决天然气网络的行为问题。这项研究探讨了在确保两个网络安全的同时整合高水平可再生能源所带来的挑战和影响。我们的模型采用随机混合整数非线性编程方法。为了解决这个复杂的模型,我们采用了人类进化模型(HEM)。我们在两个案例研究中测试了我们的方法:简单的 6 节点网络和更复杂的 IEEE RTS 24 总线电网网络,分别与 5 节点和 10 节点天然气网络相结合。结果表明,我们的模型非常有效,尤其是在电力和天然气网络连接中断的情况下,即使综合网络连接被切断,也能防止负载中断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
期刊最新文献
Realization and research of self-healing technology of power communication equipment based on power safety and controllability Integrated energy trading algorithm for source-grid-load-storage energy system based on distributed machine learning Distributed hybrid energy storage photovoltaic microgrid control based on MPPT algorithm and equilibrium control strategy Research on the impact of enterprise digital transformation based on digital twin technology on renewable energy investment decisions Optimizing power system trading processes using smart contract algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1