{"title":"Knowledge-Assisted Resource Allocation With Domain Adversarial Neural Networks","authors":"Youjia Chen;Yuyang Zheng;Jian Xu;Hanyu Lin;Peng Cheng;Ming Ding;Xi Wang;Jinsong Hu;Haifeng Zheng","doi":"10.1109/TNSM.2024.3440395","DOIUrl":null,"url":null,"abstract":"Relying on a data-driven methodology, deep learning has emerged as a new approach for dynamic resource allocation in large-scale cellular networks. This paper proposes a knowledge-assisted domain adversarial network to reduce the number of poorly performing base stations (BSs) by dynamically allocating radio resources to meet real-time mobile traffic needs. Firstly, we calculate theoretical inter-cell interference and BS capacity using Voronoi tessellation and stochastic geometry, which are then incorporated into a neural network as key parameters. Secondly, following the practical assessment, a performance classifier evaluates BS performance based on given traffic-resource pairs as either poor or good. Most importantly, we use well-performing BSs as source domain data to reallocate the resources of poorly performing ones through the domain adversarial neural network. Our experimental results demonstrate that the proposed knowledge-assisted domain adversarial resource allocation (KDARA) strategy effectively decreases the number of poorly performing BSs in the cellular network, and in turn, outperforms other benchmark algorithms in terms of both the ratio of poor BSs and radio resource consumption.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6493-6504"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10630704/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Relying on a data-driven methodology, deep learning has emerged as a new approach for dynamic resource allocation in large-scale cellular networks. This paper proposes a knowledge-assisted domain adversarial network to reduce the number of poorly performing base stations (BSs) by dynamically allocating radio resources to meet real-time mobile traffic needs. Firstly, we calculate theoretical inter-cell interference and BS capacity using Voronoi tessellation and stochastic geometry, which are then incorporated into a neural network as key parameters. Secondly, following the practical assessment, a performance classifier evaluates BS performance based on given traffic-resource pairs as either poor or good. Most importantly, we use well-performing BSs as source domain data to reallocate the resources of poorly performing ones through the domain adversarial neural network. Our experimental results demonstrate that the proposed knowledge-assisted domain adversarial resource allocation (KDARA) strategy effectively decreases the number of poorly performing BSs in the cellular network, and in turn, outperforms other benchmark algorithms in terms of both the ratio of poor BSs and radio resource consumption.
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.