So-Young Kang , Jae-Hong Moon , Taekyun Kim , Chanhyung Jeon , Y. Tony Song
{"title":"Impact of river-discharged freshwater on surface ocean environments revealed by synergistic use of satellite measurements in the East China Sea","authors":"So-Young Kang , Jae-Hong Moon , Taekyun Kim , Chanhyung Jeon , Y. Tony Song","doi":"10.1016/j.ecss.2024.108909","DOIUrl":null,"url":null,"abstract":"<div><p>River discharge forms a plume of low-salinity water that spreads offshore, delivering terrestrial substances into the ocean and thus plays a critical role in controlling marine environments as well as the carbon cycle. This study investigated how freshwater discharged from the Changjiang impacts the physical and biological responses and oceanic uptake of carbon dioxide (CO<sub>2</sub>) in the northern East China Sea (ECS) by combining the recently available sea surface salinity (SSS) product from the Soil Moisture Active Passive (SMAP) mission with other satellite measurements of sea surface temperature (SST) and chlorophyll-<em>a</em> (<em>chl-a</em>) concentration. The partial pressure of CO<sub>2</sub> (<em>p</em>CO<sub>2</sub>) and its interannual variability were estimated using empirical regression with satellite-derived environmental variables. The bias-corrected SMAP SSS revealed that river discharge largely contributed to the distinct interannual SSS variations, with a seasonal cycle reaching a maximum in winter and a minimum in summer. Compared to the SST and <em>chl-a</em> anomalies, we observed an increase in SST and primary production in the region where sea surface freshening was robust. Freshwater from rivers contributes to sea surface warming by trapping heat from the atmosphere at the surface layer. Nutrient-enriched freshwater within the buoyant plume enhances phytoplankton production, which in turn enriches the ocean surface with <em>chl-a</em>. Simultaneously, the <em>p</em>CO<sub>2</sub> was relatively low in the region where the SST and primary production were high, highlighting that the heat and riverine nutrients trapped within the buoyant plume contributed to the reduction in <em>p</em>CO<sub>2</sub> by promoting the biological uptake of CO<sub>2</sub>. The estimates conducted here illustrate the synergistic utility of multiple satellite measurements for the evaluation of CO<sub>2</sub> uptake capacity, complemented by in situ measurements of river-dominated marginal seas.</p></div>","PeriodicalId":50497,"journal":{"name":"Estuarine Coastal and Shelf Science","volume":"307 ","pages":"Article 108909"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estuarine Coastal and Shelf Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S027277142400297X","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
River discharge forms a plume of low-salinity water that spreads offshore, delivering terrestrial substances into the ocean and thus plays a critical role in controlling marine environments as well as the carbon cycle. This study investigated how freshwater discharged from the Changjiang impacts the physical and biological responses and oceanic uptake of carbon dioxide (CO2) in the northern East China Sea (ECS) by combining the recently available sea surface salinity (SSS) product from the Soil Moisture Active Passive (SMAP) mission with other satellite measurements of sea surface temperature (SST) and chlorophyll-a (chl-a) concentration. The partial pressure of CO2 (pCO2) and its interannual variability were estimated using empirical regression with satellite-derived environmental variables. The bias-corrected SMAP SSS revealed that river discharge largely contributed to the distinct interannual SSS variations, with a seasonal cycle reaching a maximum in winter and a minimum in summer. Compared to the SST and chl-a anomalies, we observed an increase in SST and primary production in the region where sea surface freshening was robust. Freshwater from rivers contributes to sea surface warming by trapping heat from the atmosphere at the surface layer. Nutrient-enriched freshwater within the buoyant plume enhances phytoplankton production, which in turn enriches the ocean surface with chl-a. Simultaneously, the pCO2 was relatively low in the region where the SST and primary production were high, highlighting that the heat and riverine nutrients trapped within the buoyant plume contributed to the reduction in pCO2 by promoting the biological uptake of CO2. The estimates conducted here illustrate the synergistic utility of multiple satellite measurements for the evaluation of CO2 uptake capacity, complemented by in situ measurements of river-dominated marginal seas.
期刊介绍:
Estuarine, Coastal and Shelf Science is an international multidisciplinary journal devoted to the analysis of saline water phenomena ranging from the outer edge of the continental shelf to the upper limits of the tidal zone. The journal provides a unique forum, unifying the multidisciplinary approaches to the study of the oceanography of estuaries, coastal zones, and continental shelf seas. It features original research papers, review papers and short communications treating such disciplines as zoology, botany, geology, sedimentology, physical oceanography.