Linear reflected backward stochastic differential equations arising from vulnerable claims in markets with random horizon

T. Choulli, S. Alsheyab
{"title":"Linear reflected backward stochastic differential equations arising from vulnerable claims in markets with random horizon","authors":"T. Choulli, S. Alsheyab","doi":"arxiv-2408.04758","DOIUrl":null,"url":null,"abstract":"This paper considers the setting governed by $(\\mathbb{F},\\tau)$, where\n$\\mathbb{F}$ is the \"public\" flow of information, and $\\tau$ is a random time\nwhich might not be $\\mathbb{F}$-observable. This framework covers credit risk\ntheory and life insurance. In this setting, we assume $\\mathbb{F}$ being\ngenerated by a Brownian motion $W$ and consider a vulnerable claim $\\xi$, whose\npayment's policy depends {\\it{essentially}} on the occurrence of $\\tau$. The\nhedging problems, in many directions, for this claim led to the question of\nstudying the linear reflected-backward-stochastic differential equations (RBSDE\nhereafter), \\begin{equation*} \\begin{split}\n&dY_t=f(t)d(t\\wedge\\tau)+Z_tdW_{t\\wedge{\\tau}}+dM_t-dK_t,\\quad Y_{\\tau}=\\xi,\\\\\n& Y\\geq S\\quad\\mbox{on}\\quad \\Lbrack0,\\tau\\Lbrack,\\quad\n\\displaystyle\\int_0^{\\tau}(Y_{s-}-S_{s-})dK_s=0\\quad P\\mbox{-a.s.}.\\end{split}\n\\end{equation*} This is the objective of this paper. For this RBSDE and without\nany further assumption on $\\tau$ that might neglect any risk intrinsic to its\nstochasticity, we answer the following: a) What are the sufficient minimal\nconditions on the data $(f, \\xi, S, \\tau)$ that guarantee the existence of the\nsolution to this RBSDE? b) How can we estimate the solution in norm using $(f,\n\\xi, S)$? c) Is there an $\\mathbb F$-RBSDE that is intimately related to the\ncurrent one and how their solutions are related to each other? This latter\nquestion has practical and theoretical leitmotivs.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers the setting governed by $(\mathbb{F},\tau)$, where $\mathbb{F}$ is the "public" flow of information, and $\tau$ is a random time which might not be $\mathbb{F}$-observable. This framework covers credit risk theory and life insurance. In this setting, we assume $\mathbb{F}$ being generated by a Brownian motion $W$ and consider a vulnerable claim $\xi$, whose payment's policy depends {\it{essentially}} on the occurrence of $\tau$. The hedging problems, in many directions, for this claim led to the question of studying the linear reflected-backward-stochastic differential equations (RBSDE hereafter), \begin{equation*} \begin{split} &dY_t=f(t)d(t\wedge\tau)+Z_tdW_{t\wedge{\tau}}+dM_t-dK_t,\quad Y_{\tau}=\xi,\\ & Y\geq S\quad\mbox{on}\quad \Lbrack0,\tau\Lbrack,\quad \displaystyle\int_0^{\tau}(Y_{s-}-S_{s-})dK_s=0\quad P\mbox{-a.s.}.\end{split} \end{equation*} This is the objective of this paper. For this RBSDE and without any further assumption on $\tau$ that might neglect any risk intrinsic to its stochasticity, we answer the following: a) What are the sufficient minimal conditions on the data $(f, \xi, S, \tau)$ that guarantee the existence of the solution to this RBSDE? b) How can we estimate the solution in norm using $(f, \xi, S)$? c) Is there an $\mathbb F$-RBSDE that is intimately related to the current one and how their solutions are related to each other? This latter question has practical and theoretical leitmotivs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有随机地平线的市场中脆弱索赔所产生的线性反射后向随机微分方程
本文考虑了$(\mathbb{F},\tau)$所支配的环境,其中$mathbb{F}$是 "公共 "信息流,$\tau$是一个随机时间,这个时间可能不是$\mathbb{F}$所能观测到的。这个框架涵盖了信用风险理论和人寿保险。在这种情况下,我们假设$\mathbb{F}$是由布朗运动$W$产生的,并考虑一个脆弱的索赔$\xi$,它的支付政策{it{essentially}}取决于$\tau$的发生。该索赔的多方向对冲问题导致了研究线性反射-向后-随机微分方程(RBSDE)的问题,即\begin{split}&dY_t=f(t)d(t\wedge\tau)+Z_tdW_{t\wedge{\tau}}+dM_t-dK_t,\quad Y_{\tau}=\xi,\\Lbrack0,tau\Lbrack,quad\displaystyle\int_0^\{tau}(Y_{s-}-S_{s-})dK_s=0\quad P\mbox{-a.s.}.\end{split}\end{equation*}这就是本文的目的。对于这个 RBSDE,在不对 $\tau$ 做任何可能忽略其随机性内在风险的假设的情况下,我们要回答以下问题:a) 保证这个 RBSDE 的解存在的数据 $(f,\xi,S,\tau)$的充分最小条件是什么?b) 我们如何用$(f, \xi, S)$来估计规范解? c) 是否存在与当前RBSDE密切相关的$\mathbb F$-RBSDE 以及它们的解之间的关系?后一个问题具有实践和理论意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A market resilient data-driven approach to option pricing COMEX Copper Futures Volatility Forecasting: Econometric Models and Deep Learning Ergodicity and Law-of-large numbers for the Volterra Cox-Ingersoll-Ross process Irreversible investment under weighted discounting: effects of decreasing impatience Long-term decomposition of robust pricing kernels under G-expectation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1