Phase-transformation assisted twinning in Molybdenum nanowires

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-08-07 DOI:10.1016/j.commatsci.2024.113273
Afnan Mostafa, Linh Vu, Zheming Guo, Ali K. Shargh, Aditya Dey, Hesam Askari, Niaz Abdolrahim
{"title":"Phase-transformation assisted twinning in Molybdenum nanowires","authors":"Afnan Mostafa, Linh Vu, Zheming Guo, Ali K. Shargh, Aditya Dey, Hesam Askari, Niaz Abdolrahim","doi":"10.1016/j.commatsci.2024.113273","DOIUrl":null,"url":null,"abstract":"Systematic molecular dynamics simulations were conducted to investigate deformation mechanisms in molybdenum (Mo) nanowires (NWs) under uniaxial tensile and compressive loading, and their correlations with bulk materials containing crack tips. Our study revealed striking, orientation-dependent phase transformation and slip/twinning mechanisms. Specifically, -loaded structures exhibited a unique bcc-fcc-bcc phase transition with twin boundary formation, while -loaded structures showed phase transformation under compression but not tension. -loaded structures displayed no phase transformation-assisted twinning, deforming solely by slip. Bulk structures with cracks exhibited similar behavior, underscoring the high stresses needed to activate phase transformations. Density Functional Theory (DFT) calculations confirmed the metastability of the fcc phase, critical for twin formation and bcc phase reorientation. These findings highlight the potential for designing stronger, more ductile Mo-based nanomaterials, opening new avenues for advanced applications in nanotechnology and materials science.","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.commatsci.2024.113273","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Systematic molecular dynamics simulations were conducted to investigate deformation mechanisms in molybdenum (Mo) nanowires (NWs) under uniaxial tensile and compressive loading, and their correlations with bulk materials containing crack tips. Our study revealed striking, orientation-dependent phase transformation and slip/twinning mechanisms. Specifically, -loaded structures exhibited a unique bcc-fcc-bcc phase transition with twin boundary formation, while -loaded structures showed phase transformation under compression but not tension. -loaded structures displayed no phase transformation-assisted twinning, deforming solely by slip. Bulk structures with cracks exhibited similar behavior, underscoring the high stresses needed to activate phase transformations. Density Functional Theory (DFT) calculations confirmed the metastability of the fcc phase, critical for twin formation and bcc phase reorientation. These findings highlight the potential for designing stronger, more ductile Mo-based nanomaterials, opening new avenues for advanced applications in nanotechnology and materials science.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钼纳米线中的相变辅助孪晶
我们进行了系统的分子动力学模拟,以研究钼(Mo)纳米线(NWs)在单轴拉伸和压缩载荷下的变形机制,以及它们与含有裂纹尖端的块体材料的相关性。我们的研究揭示了引人注目的、与取向相关的相变和滑移/缠绕机制。具体来说,-载荷结构表现出独特的 bcc-fcc-bcc 相变,并形成孪晶边界,而-载荷结构在压缩条件下表现出相变,但在拉伸条件下却没有。-负载结构不显示相变辅助的孪晶,仅通过滑动变形。带有裂缝的块体结构也表现出类似的行为,这说明激活相变需要很高的应力。密度泛函理论(DFT)计算证实了 fcc 相的可转移性,这对孪晶的形成和 bcc 相的重新定向至关重要。这些发现凸显了设计更坚固、更具韧性的钼基纳米材料的潜力,为纳米技术和材料科学的先进应用开辟了新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
QuantumShellNet: Ground-state eigenvalue prediction of materials using electronic shell structures and fermionic properties via convolutions Computational insights into the tailoring of photoelectric properties in graphene quantum dot-Ru(II) polypyridyl nanocomposites Coexisting Type-I nodal Loop, Hybrid nodal loop and nodal surface in electride Li5Sn Effect of very slow O diffusion at high temperature on very fast H diffusion in the hydride ion conductor LaH2.75O0.125 Equivariance is essential, local representation is a need: A comprehensive and critical study of machine learning potentials for tobermorite phases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1