Adaptive neuro-fuzzy inference system approach for tensile properties prediction of LPDC A357 aluminum alloy

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-08-06 DOI:10.1016/j.commatsci.2024.113275
Onur Al, Fethi Candan, Sennur Candan, Ayse Merve Acilar, Ercan Candan
{"title":"Adaptive neuro-fuzzy inference system approach for tensile properties prediction of LPDC A357 aluminum alloy","authors":"Onur Al, Fethi Candan, Sennur Candan, Ayse Merve Acilar, Ercan Candan","doi":"10.1016/j.commatsci.2024.113275","DOIUrl":null,"url":null,"abstract":"This study is based on the desire of aluminum casting foundries to understand the influence of minor changes, within the specification limits, in the alloy chemistry. In order to ensure the casting of A357 Al alloys within the framework of the casting standards and to minimize the quality problems that may arise during casting; the estimation of ultimate tensile strength (UTS), yield strength (YS) and elongation (ε) due to very small changes among the alloying elements, although they are in the standard range, by using machine learning method (ML), were studied. The dataset of chemical composition and tensile properties of Low-Pressure Die Cast (LPDC) A357 Al alloy were experimentally established. The relationship between five input variables in the A357 alloy, namely the main alloying elements Si and Mg together with the most common impurity contents Fe, Ti and Cu were selected and three outputs (i.e UTS, YS and ε) were linked by Adaptive Neuro Fuzzy Inference System (ANFIS). The ANFIS model predicted that the most detrimental element affecting tensile properties was Fe content. According to this model, the order of the relative importance on UTS, YS and ε revealed as Si, Mg and Ti content respectively after the Fe content of the alloy.","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.commatsci.2024.113275","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study is based on the desire of aluminum casting foundries to understand the influence of minor changes, within the specification limits, in the alloy chemistry. In order to ensure the casting of A357 Al alloys within the framework of the casting standards and to minimize the quality problems that may arise during casting; the estimation of ultimate tensile strength (UTS), yield strength (YS) and elongation (ε) due to very small changes among the alloying elements, although they are in the standard range, by using machine learning method (ML), were studied. The dataset of chemical composition and tensile properties of Low-Pressure Die Cast (LPDC) A357 Al alloy were experimentally established. The relationship between five input variables in the A357 alloy, namely the main alloying elements Si and Mg together with the most common impurity contents Fe, Ti and Cu were selected and three outputs (i.e UTS, YS and ε) were linked by Adaptive Neuro Fuzzy Inference System (ANFIS). The ANFIS model predicted that the most detrimental element affecting tensile properties was Fe content. According to this model, the order of the relative importance on UTS, YS and ε revealed as Si, Mg and Ti content respectively after the Fe content of the alloy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 LPDC A357 铝合金拉伸性能预测的自适应神经模糊推理系统方法
本研究基于铝铸造厂希望了解在规格限制范围内合金化学性质微小变化的影响的愿望。为了确保在铸造标准的框架内铸造 A357 铝合金,并最大限度地减少铸造过程中可能出现的质量问题;本研究采用机器学习方法(ML),对合金元素之间虽然在标准范围内但由于极小变化而导致的极限拉伸强度(UTS)、屈服强度(YS)和伸长率(ε)进行了估算。实验建立了低压压铸 (LPDC) A357 Al 合金的化学成分和拉伸性能数据集。选定了 A357 合金中五个输入变量(即主要合金元素 Si 和 Mg 以及最常见的杂质含量 Fe、Ti 和 Cu)之间的关系,并通过自适应神经模糊推理系统(ANFIS)将三个输出变量(即 UTS、YS 和 ε)联系起来。ANFIS 模型预测,影响拉伸性能的最不利因素是铁含量。根据该模型,合金中铁含量之后对 UTS、YS 和 ε 的相对重要性顺序分别为 Si、Mg 和 Ti 含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
Nanodroplet bouncing behaviors of bonded graphene-carbon nanotube hybrid film Atomistic simulation and machine learning predictions of mechanical response in nanotube-polymer composites considering filler morphology and aggregation High throughput screening of new piezoelectric materials using graph machine learning and knowledge graph approach MicroSim: A high-performance phase-field solver based on CPU and GPU implementations Introducing Materials Fingerprint (MatPrint): A novel method in graphical material representation and features compression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1