Distributional Difference-in-Differences Models with Multiple Time Periods: A Monte Carlo Analysis

Andrea Ciaccio
{"title":"Distributional Difference-in-Differences Models with Multiple Time Periods: A Monte Carlo Analysis","authors":"Andrea Ciaccio","doi":"arxiv-2408.01208","DOIUrl":null,"url":null,"abstract":"Researchers are often interested in evaluating the impact of a policy on the\nentire (or specific parts of the) distribution of the outcome of interest. In\nthis paper, I provide a practical toolkit to recover the whole counterfactual\ndistribution of the untreated potential outcome for the treated group in\nnon-experimental settings with staggered treatment adoption by generalizing the\nexisting quantile treatment effects on the treated (QTT) estimator proposed by\nCallaway and Li (2019). Besides the QTT, I consider different approaches that\nanonymously summarize the quantiles of the distribution of the outcome of\ninterest (such as tests for stochastic dominance rankings) without relying on\nrank invariance assumptions. The finite-sample properties of the estimator\nproposed are analyzed via different Monte Carlo simulations. Despite being\nslightly biased for relatively small sample sizes, the proposed method's\nperformance increases substantially when the sample size increases.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Researchers are often interested in evaluating the impact of a policy on the entire (or specific parts of the) distribution of the outcome of interest. In this paper, I provide a practical toolkit to recover the whole counterfactual distribution of the untreated potential outcome for the treated group in non-experimental settings with staggered treatment adoption by generalizing the existing quantile treatment effects on the treated (QTT) estimator proposed by Callaway and Li (2019). Besides the QTT, I consider different approaches that anonymously summarize the quantiles of the distribution of the outcome of interest (such as tests for stochastic dominance rankings) without relying on rank invariance assumptions. The finite-sample properties of the estimator proposed are analyzed via different Monte Carlo simulations. Despite being slightly biased for relatively small sample sizes, the proposed method's performance increases substantially when the sample size increases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多时段分布式差分模型:蒙特卡罗分析
研究人员通常有兴趣评估一项政策对相关结果的整体(或特定部分)分布的影响。在本文中,我提供了一个实用的工具包,通过概括卡拉韦和李(2019)提出的量化治疗效果估计法(QTT),在采用交错治疗的非实验环境中,恢复治疗组未治疗潜在结果的整个反事实分布。除了 QTT 之外,我还考虑了不同的方法,这些方法可以匿名总结相关结果分布的量化值(如随机优势排名检验),而无需依赖排名不变性假设。我们通过不同的蒙特卡罗模拟分析了所提出的估计器的有限样本特性。尽管在样本量相对较小的情况下,所提出的方法存在轻微偏差,但当样本量增加时,其性能会大幅提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple robust two-stage estimation and inference for generalized impulse responses and multi-horizon causality GPT takes the SAT: Tracing changes in Test Difficulty and Math Performance of Students A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality Why you should also use OLS estimation of tail exponents On LASSO Inference for High Dimensional Predictive Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1