Investigation of rotating detonation gas turbine cycle with different combustor passage areas

IF 5 1区 工程技术 Q1 ENGINEERING, AEROSPACE Aerospace Science and Technology Pub Date : 2024-07-29 DOI:10.1016/j.ast.2024.109432
{"title":"Investigation of rotating detonation gas turbine cycle with different combustor passage areas","authors":"","doi":"10.1016/j.ast.2024.109432","DOIUrl":null,"url":null,"abstract":"<div><p>Application of rotating detonation combustion can significantly enhance gas turbine performance, but the limited flow capacity caused by normally aspirated characteristic of rotating detonation combustor (RDC) severely constrains the operating range of gas turbine. In this paper, the detailed investigation was carried out for the influence of RDC passage area on cycle characteristic parameters for a 25MW single shaft gas turbine. The results demonstrated that changes of RDC passage area had a significant impact on operating range of rotating detonation gas turbine. As RDC passage area increased, operating range of gas turbine moved to the higher power, with the slight increases for cycle efficiency, cycle efficiency increment and net power increment compared to traditional gas turbine at identical net power. For the process when RDC passage area decreased from 0.0272 m<sup>2</sup> to 0.0240 m<sup>2</sup>, the lower working limit of rotating detonation gas turbine decreased to 53.3 % of rated power, in which equivalence ratio of RDC replaced turbine efficiency as the greatest influence factor on cycle efficiency increment.</p></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824005637","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Application of rotating detonation combustion can significantly enhance gas turbine performance, but the limited flow capacity caused by normally aspirated characteristic of rotating detonation combustor (RDC) severely constrains the operating range of gas turbine. In this paper, the detailed investigation was carried out for the influence of RDC passage area on cycle characteristic parameters for a 25MW single shaft gas turbine. The results demonstrated that changes of RDC passage area had a significant impact on operating range of rotating detonation gas turbine. As RDC passage area increased, operating range of gas turbine moved to the higher power, with the slight increases for cycle efficiency, cycle efficiency increment and net power increment compared to traditional gas turbine at identical net power. For the process when RDC passage area decreased from 0.0272 m2 to 0.0240 m2, the lower working limit of rotating detonation gas turbine decreased to 53.3 % of rated power, in which equivalence ratio of RDC replaced turbine efficiency as the greatest influence factor on cycle efficiency increment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同燃烧器通道面积的旋转爆燃燃气轮机循环研究
旋转爆燃燃烧的应用可显著提高燃气轮机的性能,但旋转爆燃燃烧器(RDC)的常吸气特性导致的有限流量严重限制了燃气轮机的运行范围。本文详细研究了 RDC 通道面积对 25MW 单轴燃气轮机循环特性参数的影响。结果表明,RDC 通道面积的变化对旋转爆燃式燃气轮机的运行范围有显著影响。随着 RDC 通道面积的增加,燃气轮机的运行范围向大功率方向移动,与相同净功率下的传统燃气轮机相比,循环效率、循环效率增量和净功率增量略有增加。对于 RDC 通道面积从 0.0272 m 减小到 0.0240 m 的过程,旋转爆燃式燃气轮机的工作下限下降到额定功率的 53.3%,其中 RDC 的等效比取代了涡轮机效率,成为循环效率增量的最大影响因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aerospace Science and Technology
Aerospace Science and Technology 工程技术-工程:宇航
CiteScore
10.30
自引率
28.60%
发文量
654
审稿时长
54 days
期刊介绍: Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to: • The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites • The control of their environment • The study of various systems they are involved in, as supports or as targets. Authors are invited to submit papers on new advances in the following topics to aerospace applications: • Fluid dynamics • Energetics and propulsion • Materials and structures • Flight mechanics • Navigation, guidance and control • Acoustics • Optics • Electromagnetism and radar • Signal and image processing • Information processing • Data fusion • Decision aid • Human behaviour • Robotics and intelligent systems • Complex system engineering. Etc.
期刊最新文献
Experimental study on loss and flow mechanism of variable stator vanes in high-pressure compressor with bleed Shock wave and fully turbulent boundary layer interaction controlled by surface arc plasma actuation Iterative control framework with application to guidance and attitude control of rockets Experimental and numerical study on the mechanism of leakage flow influence on the performance of high-speed diffuser cascade Point-enhanced convolutional neural network: A novel deep learning method for transonic wall-bounded flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1