Extraction and characterization of Thespesia populnea leaf cellulose: a biomass to biomaterial conversion

IF 3.5 4区 工程技术 Q3 ENERGY & FUELS Biomass Conversion and Biorefinery Pub Date : 2024-08-07 DOI:10.1007/s13399-024-06018-x
T. Velmurugan, G. Suganya Priyadharshini, Indran Suyambulingam, Suchart Siengchin
{"title":"Extraction and characterization of Thespesia populnea leaf cellulose: a biomass to biomaterial conversion","authors":"T. Velmurugan, G. Suganya Priyadharshini, Indran Suyambulingam, Suchart Siengchin","doi":"10.1007/s13399-024-06018-x","DOIUrl":null,"url":null,"abstract":"<p>The research focuses on exploring the use of cellulose obtained from <i>Thespesia populnea</i> leaves as a strengthening component, in polymer composites. It delves into the characteristics and qualities of this cellulose material. The authors utilized an alkaline treatment method to break down the cellulose-hemicellulose-lignin complex found in <i>Thespesia populnea</i> leaves leading to the extraction of cellulose fibers. Various characterization techniques were applied to the extracted cellulose, such as UV–Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), and thermogravimetric analysis. The researchers examined how light interacts with cellulose noting an absorption band within the 250–300 nm wavelength range. XRD analysis revealed a crystallinity index of 73.7% for the cellulose material. FTIR analysis helped identify its groups while FESEM provided insights into the morphology of the cellulose fibers showing an average size of 6.37 μm. The cellulose from <i>Thespesia populnea</i> leaves is thermally stable up to a temperature of 248 °C evidenced by thermogravimetric analysis. The main goal was to assess <i>Thespesia</i> leaf celluloses’ suitability as a reinforcing material for polymer composites by understanding its properties and behavior for applications. The study suggests that this leaf-derived cellulose could be a reinforcement agent in polymer composites due to its characteristics. If this cellulose material is effectively integrated into composites, it could improve characteristics, decrease weight, and support the advancement of materials.</p>","PeriodicalId":488,"journal":{"name":"Biomass Conversion and Biorefinery","volume":"64 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass Conversion and Biorefinery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13399-024-06018-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The research focuses on exploring the use of cellulose obtained from Thespesia populnea leaves as a strengthening component, in polymer composites. It delves into the characteristics and qualities of this cellulose material. The authors utilized an alkaline treatment method to break down the cellulose-hemicellulose-lignin complex found in Thespesia populnea leaves leading to the extraction of cellulose fibers. Various characterization techniques were applied to the extracted cellulose, such as UV–Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), and thermogravimetric analysis. The researchers examined how light interacts with cellulose noting an absorption band within the 250–300 nm wavelength range. XRD analysis revealed a crystallinity index of 73.7% for the cellulose material. FTIR analysis helped identify its groups while FESEM provided insights into the morphology of the cellulose fibers showing an average size of 6.37 μm. The cellulose from Thespesia populnea leaves is thermally stable up to a temperature of 248 °C evidenced by thermogravimetric analysis. The main goal was to assess Thespesia leaf celluloses’ suitability as a reinforcing material for polymer composites by understanding its properties and behavior for applications. The study suggests that this leaf-derived cellulose could be a reinforcement agent in polymer composites due to its characteristics. If this cellulose material is effectively integrated into composites, it could improve characteristics, decrease weight, and support the advancement of materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
杨梅叶纤维素的提取和表征:生物质到生物材料的转化
研究的重点是探索在聚合物复合材料中使用从罂粟叶中提取的纤维素作为强化成分。研究深入探讨了这种纤维素材料的特性和质量。作者利用一种碱性处理方法来分解杨梅叶中的纤维素-半纤维素-木质素复合物,从而提取出纤维素纤维。对提取的纤维素采用了多种表征技术,如紫外可见光谱、X 射线衍射 (XRD)、傅立叶变换红外光谱 (FTIR)、场发射扫描电子显微镜 (FESEM) 和热重分析。研究人员研究了光与纤维素的相互作用,发现在 250-300 纳米波长范围内有一条吸收带。XRD 分析显示,纤维素材料的结晶度指数为 73.7%。傅立叶变换红外光谱分析帮助确定了纤维素的基团,而 FESEM 则提供了对纤维素纤维形态的深入了解,纤维素纤维的平均尺寸为 6.37 μm。热重分析表明,罂粟叶纤维素的热稳定性可达 248 ℃。研究的主要目的是通过了解刺桐叶纤维素的特性和应用行为,评估刺桐叶纤维素是否适合用作聚合物复合材料的增强材料。研究表明,由于其特性,这种叶纤维素可作为聚合物复合材料的增强剂。如果能将这种纤维素材料有效地融入复合材料中,就能改善其特性、减轻重量并促进材料的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomass Conversion and Biorefinery
Biomass Conversion and Biorefinery Energy-Renewable Energy, Sustainability and the Environment
CiteScore
7.00
自引率
15.00%
发文量
1358
期刊介绍: Biomass Conversion and Biorefinery presents articles and information on research, development and applications in thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion, including all necessary steps for the provision and preparation of the biomass as well as all possible downstream processing steps for the environmentally sound and economically viable provision of energy and chemical products.
期刊最新文献
Special Issue: Biomass for Energy and Value-added Products – Technological Progress 2022 Mechanical and flammability properties of ultrasonically processed silane-treated areca-banana fiber-reinforced epoxy composites for lightweight applications Effect of drilling process parameters on agro-waste-based polymer composites reinforced with banana fiber and coconut shell filler Preparation and characterization of activated carbon from medlar seed by chemical activation with phosphoric acid and its application in uranium adsorption Thermodynamic evaluation on the chemical looping co-gasification performances of Cr-containing tannery sludge and waste surgical mask
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1