Cole–Cole Model for the Dielectric Characterization of Healthy Skin and Basal Cell Carcinoma at THz Frequencies

IF 2.7 Q3 ENGINEERING, BIOMEDICAL IEEE Open Journal of Engineering in Medicine and Biology Pub Date : 2024-08-05 DOI:10.1109/OJEMB.2024.3438562
Enrico Mattana;Matteo Bruno Lodi;Marco Simone;Giuseppe Mazzarella;Alessandro Fanti
{"title":"Cole–Cole Model for the Dielectric Characterization of Healthy Skin and Basal Cell Carcinoma at THz Frequencies","authors":"Enrico Mattana;Matteo Bruno Lodi;Marco Simone;Giuseppe Mazzarella;Alessandro Fanti","doi":"10.1109/OJEMB.2024.3438562","DOIUrl":null,"url":null,"abstract":"THz radiationeffectively probes biological tissue water content due to its high sensibility to polar molecules. Skin and basal cell carcinoma (BCC), both rich in water, have been extensively studied in the THz range. Typically, the Double Debye model is used to study their dielectric permittivity. This work focuses on the viability of the multipole Cole-Cole model as an alternative dielectric model. To determine the best fit parameters, we used a genetic algorithm-based approach, solving a least squares problem. Compared with the Double Debye model, a maximum reduction of the RMSE value up to more than 50% and maximum relative percentage errors of 2.8% have been measured for both second and third order Cole-Cole models. Since the errors of the second and third order Cole-Cole models are similar, a two-poles model is enough to describe the behaviour both tissues from 0.2 THz to 2 THz.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10623268","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10623268/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

THz radiationeffectively probes biological tissue water content due to its high sensibility to polar molecules. Skin and basal cell carcinoma (BCC), both rich in water, have been extensively studied in the THz range. Typically, the Double Debye model is used to study their dielectric permittivity. This work focuses on the viability of the multipole Cole-Cole model as an alternative dielectric model. To determine the best fit parameters, we used a genetic algorithm-based approach, solving a least squares problem. Compared with the Double Debye model, a maximum reduction of the RMSE value up to more than 50% and maximum relative percentage errors of 2.8% have been measured for both second and third order Cole-Cole models. Since the errors of the second and third order Cole-Cole models are similar, a two-poles model is enough to describe the behaviour both tissues from 0.2 THz to 2 THz.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太赫兹频率下健康皮肤和基底细胞癌的介电特性科尔-科尔模型
由于太赫兹辐射对极性分子具有高度敏感性,因此可有效探测生物组织的含水量。皮肤和基底细胞癌(BCC)都富含水分,在太赫兹范围内对它们进行了广泛的研究。通常使用双德拜模型来研究它们的介电常数。这项工作的重点是研究多极科尔-科尔模型作为替代介电模型的可行性。为了确定最佳拟合参数,我们采用了基于遗传算法的方法,求解最小二乘法问题。与双 Debye 模型相比,二阶和三阶 Cole-Cole 模型的均方根误差值最大降低了 50%以上,最大相对误差百分比为 2.8%。由于二阶和三阶 Cole-Cole 模型的误差相似,因此双极模型足以描述从 0.2 太赫兹到 2 太赫兹的两种组织行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.50
自引率
3.40%
发文量
20
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.
期刊最新文献
Corrections to “Gastric Section Correlation Network for Gastric Precancerous Lesion Diagnosis” IEEE Open Journal of Engineering in Medicine and Biology Editorial Board Information IEEE Open Journal of Engineering in Medicine and Biology Author Instructions Guest Editorial: Introduction to the Special Series on Advances in Cardiovascular and Respiratory Systems Engineering Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1