首页 > 最新文献

IEEE Open Journal of Engineering in Medicine and Biology最新文献

英文 中文
Corrections to “Gastric Section Correlation Network for Gastric Precancerous Lesion Diagnosis” 用于胃癌前病变诊断的胃部切片相关网络 "的更正
IF 2.7 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-11-11 DOI: 10.1109/OJEMB.2024.3452970
Jyun-Yao Jhang;Yu-Ching Tsai;Tzu-Chun Hsu;Chun-Rong Huang;Hsiu-Chi Cheng;Bor-Shyang Sheu
Presents corrections to the paper, Gastric Section Correlation Network for Gastric Precancerous Lesion Diagnosis.
介绍对论文《用于胃癌前病变诊断的胃部切片相关网络》的更正。
{"title":"Corrections to “Gastric Section Correlation Network for Gastric Precancerous Lesion Diagnosis”","authors":"Jyun-Yao Jhang;Yu-Ching Tsai;Tzu-Chun Hsu;Chun-Rong Huang;Hsiu-Chi Cheng;Bor-Shyang Sheu","doi":"10.1109/OJEMB.2024.3452970","DOIUrl":"https://doi.org/10.1109/OJEMB.2024.3452970","url":null,"abstract":"Presents corrections to the paper, Gastric Section Correlation Network for Gastric Precancerous Lesion Diagnosis.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10750350","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Open Journal of Engineering in Medicine and Biology Author Instructions IEEE Open Journal of Engineering in Medicine and Biology 作者说明
IF 2.7 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-11-08 DOI: 10.1109/OJEMB.2024.3387893
{"title":"IEEE Open Journal of Engineering in Medicine and Biology Author Instructions","authors":"","doi":"10.1109/OJEMB.2024.3387893","DOIUrl":"https://doi.org/10.1109/OJEMB.2024.3387893","url":null,"abstract":"","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747777","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Open Journal of Engineering in Medicine and Biology Editorial Board Information IEEE Open Journal of Engineering in Medicine and Biology 编辑委员会信息
IF 2.7 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-11-08 DOI: 10.1109/OJEMB.2024.3387895
{"title":"IEEE Open Journal of Engineering in Medicine and Biology Editorial Board Information","authors":"","doi":"10.1109/OJEMB.2024.3387895","DOIUrl":"https://doi.org/10.1109/OJEMB.2024.3387895","url":null,"abstract":"","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747779","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guest Editorial: Introduction to the Special Series on Advances in Cardiovascular and Respiratory Systems Engineering 特约编辑:心血管和呼吸系统工程进展特别丛书简介
IF 2.7 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-11-07 DOI: 10.1109/OJEMB.2024.3486457
Riccardo Barbieri;Maximiliano Mollura
{"title":"Guest Editorial: Introduction to the Special Series on Advances in Cardiovascular and Respiratory Systems Engineering","authors":"Riccardo Barbieri;Maximiliano Mollura","doi":"10.1109/OJEMB.2024.3486457","DOIUrl":"https://doi.org/10.1109/OJEMB.2024.3486457","url":null,"abstract":"","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10746532","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Evaluation of a New Perfusion Machine Using Normothermic Cycles on Explanted Livers 对使用常温循环的新型灌注机进行实验评估
IF 2.7 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-11 DOI: 10.1109/OJEMB.2024.3478791
Eleonora Barcali;Lorenzo Maggi;Rebecca Panconesi;Fabio Staderini;Leonardo Bocchi;Cosimo Nardi;Nadia Navari;Adriano Peris;Matteo Risaliti;Mauricio F. Carvalho;Fabio Marra;Philipp Dutkowski;Gian Luca Grazi;Andrea Schlegel;Filippo Bigi;Mattia Dimitri;Andrea Corvi
Goal: Organ perfusion is a vast subject with several techniques, the most common being Hypothermic Machine Perfusion (HMP) and Normothermic Machine Perfusion (NMP). In this paper, a new machine developed at the Biolab of the University of Florence has been tested to validate its capability to perform a well-controlled Oxygenated Rewarming (COR) phase and maintain stability during the NMP phase. Methods: The tests (n = 5) were conducted on fresh porcine livers and evaluated according to liver perfusion standards. The developed machine is based on a previous version, with an integrated control and sensor system and a complete mechanical and electronic redesign. Results: The results demonstrate the excellent usability of the machine and its ability to effectively maintain the organs in good condition. The new system performed well, and the measures made on the livers were satisfactory for good preservation of the organ. Conclusion: This study showed the effectiveness of the developed machine. Future development of the system will include a more sophisticated control system to ensure the correct parameters for perfusion.
目标:器官灌注是一个庞大的课题,有多种技术,最常见的是低温机器灌注(HMP)和常温机器灌注(NMP)。本文对佛罗伦萨大学生物实验室开发的新型机器进行了测试,以验证其是否有能力执行良好的充氧复温(COR)阶段,并在 NMP 阶段保持稳定。测试方法测试(n = 5)在新鲜猪肝上进行,并根据肝脏灌注标准进行评估。所开发的机器基于之前的版本,集成了控制和传感器系统,并进行了全面的机械和电子重新设计。结果结果表明,该机器具有出色的可用性,能够有效保持器官的良好状态。新系统性能良好,对肝脏采取的措施也令人满意,从而很好地保存了器官。结论这项研究显示了所开发机器的有效性。该系统的未来发展将包括一个更复杂的控制系统,以确保灌注参数的正确性。
{"title":"Experimental Evaluation of a New Perfusion Machine Using Normothermic Cycles on Explanted Livers","authors":"Eleonora Barcali;Lorenzo Maggi;Rebecca Panconesi;Fabio Staderini;Leonardo Bocchi;Cosimo Nardi;Nadia Navari;Adriano Peris;Matteo Risaliti;Mauricio F. Carvalho;Fabio Marra;Philipp Dutkowski;Gian Luca Grazi;Andrea Schlegel;Filippo Bigi;Mattia Dimitri;Andrea Corvi","doi":"10.1109/OJEMB.2024.3478791","DOIUrl":"https://doi.org/10.1109/OJEMB.2024.3478791","url":null,"abstract":"<italic>Goal:</i>\u0000 Organ perfusion is a vast subject with several techniques, the most common being Hypothermic Machine Perfusion (HMP) and Normothermic Machine Perfusion (NMP). In this paper, a new machine developed at the Biolab of the University of Florence has been tested to validate its capability to perform a well-controlled Oxygenated Rewarming (COR) phase and maintain stability during the NMP phase. \u0000<italic>Methods:</i>\u0000 The tests (n = 5) were conducted on fresh porcine livers and evaluated according to liver perfusion standards. The developed machine is based on a previous version, with an integrated control and sensor system and a complete mechanical and electronic redesign. \u0000<italic>Results:</i>\u0000 The results demonstrate the excellent usability of the machine and its ability to effectively maintain the organs in good condition. The new system performed well, and the measures made on the livers were satisfactory for good preservation of the organ. \u0000<italic>Conclusion:</i>\u0000 This study showed the effectiveness of the developed machine. Future development of the system will include a more sophisticated control system to ensure the correct parameters for perfusion.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10713905","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural Implants Without Active Implanted Electronics: Possibilities and Limitations of Transcutaneous Coupling in Miniaturized Active Implants 无主动植入电子装置的神经植入物:微型有源植入体经皮耦合的可能性和局限性
IF 2.7 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-09 DOI: 10.1109/OJEMB.2024.3477267
Patrick Kiele;Gregor Laengle;Martin Schmoll;Cristian Pasluosta;Ronny Pfeifer;Martin Schuettler;Oskar Aszmann;Thomas Stieglitz
Goal: Transcutaneous coupling scheme for wireless powering and signal in active implants are known for more than a decade. This study aimed to investigate the in vivo behavior of this approach to drive multiple channels of an implanted peripheral nerve interfaces. Methods: The stimulation signals were transmitted through the skin over two contacts to an intracorporeal counterpart which was connected to a cuff electrode with two channels. EMG after stimulation was measured to establish recruitment curves. Results: Limitations of transcutaneous coupling were found in the feasible complexity of the system. High electrical crosstalk in a multi-channel system reduces this approach to low channel applications, such as pain treatment. No significant influence of the pulse width or extracorporeal stimulation amplitude on the electrical crosstalk was observed. Conclusions: The study's findings provide insight into the behavior of the transcutaneous coupling scheme in vivo and highlight the limitations and areas of application. Our results indicate that transcutaneous coupling schemes are a promising alternative approach for wireless powering of implants, as it does not require complex implanted electronics, expensive sophisticated electronics, and hermetic enclosures. Physical constraints, however, limit the use in highly selective nerve stimulation scenarios.
目标:用于有源植入物无线供电和信号的经皮耦合方案已有十多年历史。本研究旨在调查这种方法在体内驱动植入式外周神经接口多通道的行为。研究方法刺激信号通过皮肤的两个触点传输到体外对应装置,体外对应装置连接到带有两个通道的袖带电极。测量刺激后的肌电图以建立招募曲线。结果:经皮耦合的局限性在于系统的可行性复杂性。多通道系统中的高电串扰使这种方法只能应用于低通道,如疼痛治疗。脉冲宽度或体外刺激幅度对电串扰没有明显影响。结论:研究结果让我们深入了解了体内经皮耦合方案的行为,并强调了其局限性和应用领域。我们的研究结果表明,经皮耦合方案是一种很有前途的植入物无线供电替代方法,因为它不需要复杂的植入电子设备、昂贵的精密电子器件和密封外壳。不过,由于物理上的限制,它在高选择性神经刺激方案中的应用受到了限制。
{"title":"Neural Implants Without Active Implanted Electronics: Possibilities and Limitations of Transcutaneous Coupling in Miniaturized Active Implants","authors":"Patrick Kiele;Gregor Laengle;Martin Schmoll;Cristian Pasluosta;Ronny Pfeifer;Martin Schuettler;Oskar Aszmann;Thomas Stieglitz","doi":"10.1109/OJEMB.2024.3477267","DOIUrl":"https://doi.org/10.1109/OJEMB.2024.3477267","url":null,"abstract":"<italic>Goal:</i>\u0000 Transcutaneous coupling scheme for wireless powering and signal in active implants are known for more than a decade. This study aimed to investigate the in vivo behavior of this approach to drive multiple channels of an implanted peripheral nerve interfaces. \u0000<italic>Methods:</i>\u0000 The stimulation signals were transmitted through the skin over two contacts to an intracorporeal counterpart which was connected to a cuff electrode with two channels. EMG after stimulation was measured to establish recruitment curves. \u0000<italic>Results:</i>\u0000 Limitations of transcutaneous coupling were found in the feasible complexity of the system. High electrical crosstalk in a multi-channel system reduces this approach to low channel applications, such as pain treatment. No significant influence of the pulse width or extracorporeal stimulation amplitude on the electrical crosstalk was observed. \u0000<italic>Conclusions:</i>\u0000 The study's findings provide insight into the behavior of the transcutaneous coupling scheme in vivo and highlight the limitations and areas of application. Our results indicate that transcutaneous coupling schemes are a promising alternative approach for wireless powering of implants, as it does not require complex implanted electronics, expensive sophisticated electronics, and hermetic enclosures. Physical constraints, however, limit the use in highly selective nerve stimulation scenarios.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10710177","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feasibility of Using Autonomous Ankle Exoskeletons to Augment Community Walking in Cerebral Palsy 使用自主踝关节外骨骼辅助脑瘫患者在社区行走的可行性
IF 2.7 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-08 DOI: 10.1109/OJEMB.2024.3475911
Collin D. Bowersock;Zachary F. Lerner
Objective: This pilot study investigated the feasibility and efficacy of using autonomous ankle exoskeletons in community settings among individuals with cerebral palsy (CP). Five participants completed two structured community walking protocols: a week-long ankle exoskeleton acclimation and training intervention, and a dose-matched Sham intervention of unassisted walking. Results: Results demonstrated significant improvements in acclimatized walking performance with the ankle exoskeleton, including increased speed and stride length. Participants also reported increased enjoyment and perceived benefits of using the exoskeleton. While ankle exoskeleton training did not lead to significant improvements in unassisted walking, this study demonstrates the feasibility of using ankle exoskeletons in the real world by people with CP. Conclusions: This study highlights the potential of wearable exoskeletons to augment community walking performance in CP, laying a foundation for further exploration in real-world environments.
研究目的这项试验性研究调查了在社区环境中对脑性麻痹(CP)患者使用自主踝关节外骨骼的可行性和有效性。五名参与者完成了两个结构化的社区行走方案:为期一周的踝关节外骨骼适应和训练干预,以及剂量匹配的无辅助行走 Sham 干预。结果结果表明,使用踝关节外骨骼后,适应性步行表现明显改善,包括速度和步幅增加。参与者还报告称使用外骨骼的乐趣和感知到的益处有所增加。虽然踝关节外骨骼训练并没有显著改善无辅助行走能力,但这项研究表明,CP 患者在现实世界中使用踝关节外骨骼是可行的。结论:本研究强调了可穿戴外骨骼在增强社区行走能力方面的潜力,为在真实世界环境中进一步探索奠定了基础。
{"title":"Feasibility of Using Autonomous Ankle Exoskeletons to Augment Community Walking in Cerebral Palsy","authors":"Collin D. Bowersock;Zachary F. Lerner","doi":"10.1109/OJEMB.2024.3475911","DOIUrl":"https://doi.org/10.1109/OJEMB.2024.3475911","url":null,"abstract":"<italic>Objective:</i>\u0000 This pilot study investigated the feasibility and efficacy of using autonomous ankle exoskeletons in community settings among individuals with cerebral palsy (CP). Five participants completed two structured community walking protocols: a week-long ankle exoskeleton acclimation and training intervention, and a dose-matched Sham intervention of unassisted walking. \u0000<italic>Results:</i>\u0000 Results demonstrated significant improvements in acclimatized walking performance with the ankle exoskeleton, including increased speed and stride length. Participants also reported increased enjoyment and perceived benefits of using the exoskeleton. While ankle exoskeleton training did not lead to significant improvements in unassisted walking, this study demonstrates the feasibility of using ankle exoskeletons in the real world by people with CP. \u0000<italic>Conclusions:</i>\u0000 This study highlights the potential of wearable exoskeletons to augment community walking performance in CP, laying a foundation for further exploration in real-world environments.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10709375","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine Learning-Based X-Ray Projection Interpolation for Improved 4D-CBCT Reconstruction 基于机器学习的 X 射线投影插值用于改进 4D-CBCT 重建
IF 2.7 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-11 DOI: 10.1109/OJEMB.2024.3459622
Jayroop Ramesh;Donthi Sankalpa;Rohan Mitra;Salam Dhou
Goal: Respiration-correlated cone-beam computed tomography (4D-CBCT) is an X-ray-based imaging modality that uses reconstruction algorithms to produce time-varying volumetric images of moving anatomy over a cycle of respiratory motion. The quality of the produced images is affected by the number of CBCT projections available for reconstruction. Interpolation techniques have been used to generate intermediary projections to be used, along with the original projections, for reconstruction. Transfer learning is a powerful approach that harnesses the ability to reuse pre-trained models in solving new problems. Methods: Several state-of-the-art pre-trained deep learning models, used for video frame interpolation, are utilized in this work to generate intermediary projections. Moreover, a novel regression predictive modeling approach is also proposed to achieve the same objective. Digital phantom and clinical datasets are used to evaluate the performance of the models. Results: The results show that the Real-Time Intermediate Flow Estimation (RIFE) algorithm outperforms the others in terms of the Structural Similarity Index Method (SSIM): 0.986 $pm$ 0.010, Peak Signal to Noise Ratio (PSNR): 44.13 $pm$ 2.76, and Mean Square Error (MSE): 18.86 $pm$ 206.90 across all datasets. Moreover, the interpolated projections were used along with the original ones to reconstruct a 4D-CBCT image that was compared to that reconstructed from the original projections only. Conclusions: The reconstructed image using the proposed approach was found to minimize the streaking artifacts, thereby enhancing the image quality. This work demonstrates the advantage of using general-purpose transfer learning algorithms in 4D-CBCT image enhancement.
目标:呼吸相关锥束计算机断层扫描(4D-CBCT)是一种基于 X 射线的成像模式,它使用重建算法生成呼吸运动周期中移动解剖结构的时变容积图像。生成图像的质量受可用于重建的 CBCT 投影数量的影响。插值技术被用来生成中间投影,与原始投影一起用于重建。迁移学习是一种功能强大的方法,它能在解决新问题时重复使用预先训练好的模型。方法:本研究利用几个用于视频帧插值的最先进的预训练深度学习模型来生成中间投影。此外,还提出了一种新颖的回归预测建模方法,以实现相同的目标。数字模型和临床数据集用于评估模型的性能。结果显示结果表明,在所有数据集上,实时中间流估计(RIFE)算法在结构相似性指数法(SSIM):0.986 $pm$ 0.010、峰值信噪比(PSNR):44.13 $pm$ 2.76和均方误差(MSE):18.86 $pm$ 206.90方面均优于其他算法。此外,内插投影与原始投影一起用于重建 4D-CBCT 图像,并与仅由原始投影重建的图像进行比较。结论使用建议方法重建的图像能最大限度地减少条纹伪影,从而提高图像质量。这项工作证明了在 4D-CBCT 图像增强中使用通用迁移学习算法的优势。
{"title":"Machine Learning-Based X-Ray Projection Interpolation for Improved 4D-CBCT Reconstruction","authors":"Jayroop Ramesh;Donthi Sankalpa;Rohan Mitra;Salam Dhou","doi":"10.1109/OJEMB.2024.3459622","DOIUrl":"10.1109/OJEMB.2024.3459622","url":null,"abstract":"<italic>Goal:</i>\u0000 Respiration-correlated cone-beam computed tomography (4D-CBCT) is an X-ray-based imaging modality that uses reconstruction algorithms to produce time-varying volumetric images of moving anatomy over a cycle of respiratory motion. The quality of the produced images is affected by the number of CBCT projections available for reconstruction. Interpolation techniques have been used to generate intermediary projections to be used, along with the original projections, for reconstruction. Transfer learning is a powerful approach that harnesses the ability to reuse pre-trained models in solving new problems. \u0000<italic>Methods:</i>\u0000 Several state-of-the-art pre-trained deep learning models, used for video frame interpolation, are utilized in this work to generate intermediary projections. Moreover, a novel regression predictive modeling approach is also proposed to achieve the same objective. Digital phantom and clinical datasets are used to evaluate the performance of the models. \u0000<italic>Results:</i>\u0000 The results show that the Real-Time Intermediate Flow Estimation (RIFE) algorithm outperforms the others in terms of the Structural Similarity Index Method (SSIM): 0.986 \u0000<inline-formula><tex-math>$pm$</tex-math></inline-formula>\u0000 0.010, Peak Signal to Noise Ratio (PSNR): 44.13 \u0000<inline-formula><tex-math>$pm$</tex-math></inline-formula>\u0000 2.76, and Mean Square Error (MSE): 18.86 \u0000<inline-formula><tex-math>$pm$</tex-math></inline-formula>\u0000 206.90 across all datasets. Moreover, the interpolated projections were used along with the original ones to reconstruct a 4D-CBCT image that was compared to that reconstructed from the original projections only. \u0000<italic>Conclusions:</i>\u0000 The reconstructed image using the proposed approach was found to minimize the streaking artifacts, thereby enhancing the image quality. This work demonstrates the advantage of using general-purpose transfer learning algorithms in 4D-CBCT image enhancement.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10678916","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of Brain Function After 240 Days Confinement Using Functional Near Infrared Spectroscopy 使用功能性近红外光谱对 240 天禁闭后的大脑功能进行评估。
IF 2.7 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-10 DOI: 10.1109/OJEMB.2024.3457240
Fares Al-Shargie;Usman Tariq;Saleh Al-Ameri;Abdulla Al-Hammadi;Schastlivtseva Daria Vladimirovna;Hasan Al-Nashash
Future space exploration missions will expose astronauts to various stressors, making the early detection of mental stress crucial for prolonged missions. Our study proposes using functional near infrared spectroscopy (fNIRS) combined with multiple machine learning models to assess the level of mental stress. Objective: The objective is to identify and quantify stress levels during 240 days confinement scenario. In this study, we utilize a diverse set of stress indicators including salivary alpha amylase (sAA) levels, reaction time (RT) to stimuli, accuracy of target detection, and power spectral density (PSD), in conjunction with functional connectivity networks (FCN). We estimate the PSD using Fast Fourier Transform (FFT) and the FCN using partial directed coherence. Results: Our findings reveal several intriguing insights. The sAA levels increased from the first 30 days in confinement to the culmination of the lengthy 240-day mission, suggesting a cumulative impact of stress. Conversely, RT and the accuracy of target detection exhibit significant fluctuations over the course of the mission. The power spectral density shows a significant increase with time-in-mission across all participants in most of the frontal area. The FCN shows a significant decrease in most of the right frontal areas. Five different machine learning classifiers are employed to differentiate between two levels of stress resulting in impressive classification accuracy rates: 96.44% with-nearest neighbor (KNN), 95.52% with linear discriminant analysis (LDA), 88.71% with Naïve Bayes (NB), 87.41 with decision trees (DT) and 96.48% with Support Vector Machine (SVM). In conclusion, this study demonstrates the effectiveness of combining functional near infrared spectroscopy (fNIRS) with multiple machine learning models to accurately assess and quantify mental stress levels during prolonged space missions, providing a promising approach for early stress detection in astronauts.
未来的太空探索任务将使宇航员面临各种压力,因此早期检测精神压力对长期任务至关重要。我们的研究建议使用功能性近红外光谱(fNIRS)结合多种机器学习模型来评估精神压力水平。目标:目的是识别和量化 240 天禁闭期间的压力水平。在这项研究中,我们采用了一系列不同的压力指标,包括唾液α-淀粉酶(sAA)水平、对刺激的反应时间(RT)、目标检测的准确性、功率谱密度(PSD)以及功能连接网络(FCN)。我们使用快速傅立叶变换(FFT)估算功率谱密度,并使用部分定向相干(partial directed coherence)估算功能连接网络(FCN)。结果:我们的研究结果揭示了几个耐人寻味的观点。从禁闭的前 30 天到漫长的 240 天任务的最后阶段,sAA 水平一直在上升,这表明压力的影响是累积性的。与此相反,RT和目标探测的准确性在任务过程中出现了显著波动。功率谱密度显示,所有参与者额叶大部分区域的功率谱密度随着任务时间的延长而显著增加。在右额叶的大部分区域,FCN 显示出明显的下降。我们采用了五种不同的机器学习分类器来区分两种压力水平,结果分类准确率令人印象深刻:最近邻分类法(KNN)的准确率为 96.44%,线性判别分析(LDA)的准确率为 95.52%,奈夫贝叶斯(NB)的准确率为 88.71%,决策树(DT)的准确率为 87.41%,支持向量机(SVM)的准确率为 96.48%。总之,这项研究证明了将功能性近红外光谱(fNIRS)与多种机器学习模型相结合,准确评估和量化长期太空任务期间精神压力水平的有效性,为宇航员早期压力检测提供了一种可行的方法。
{"title":"Assessment of Brain Function After 240 Days Confinement Using Functional Near Infrared Spectroscopy","authors":"Fares Al-Shargie;Usman Tariq;Saleh Al-Ameri;Abdulla Al-Hammadi;Schastlivtseva Daria Vladimirovna;Hasan Al-Nashash","doi":"10.1109/OJEMB.2024.3457240","DOIUrl":"10.1109/OJEMB.2024.3457240","url":null,"abstract":"Future space exploration missions will expose astronauts to various stressors, making the early detection of mental stress crucial for prolonged missions. Our study proposes using functional near infrared spectroscopy (fNIRS) combined with multiple machine learning models to assess the level of mental stress. \u0000<italic>Objective:</i>\u0000 The objective is to identify and quantify stress levels during 240 days confinement scenario. In this study, we utilize a diverse set of stress indicators including salivary alpha amylase (sAA) levels, reaction time (RT) to stimuli, accuracy of target detection, and power spectral density (PSD), in conjunction with functional connectivity networks (FCN). We estimate the PSD using Fast Fourier Transform (FFT) and the FCN using partial directed coherence. \u0000<italic>Results:</i>\u0000 Our findings reveal several intriguing insights. The sAA levels increased from the first 30 days in confinement to the culmination of the lengthy 240-day mission, suggesting a cumulative impact of stress. Conversely, RT and the accuracy of target detection exhibit significant fluctuations over the course of the mission. The power spectral density shows a significant increase with time-in-mission across all participants in most of the frontal area. The FCN shows a significant decrease in most of the right frontal areas. Five different machine learning classifiers are employed to differentiate between two levels of stress resulting in impressive classification accuracy rates: 96.44% with-nearest neighbor (KNN), 95.52% with linear discriminant analysis (LDA), 88.71% with Naïve Bayes (NB), 87.41 with decision trees (DT) and 96.48% with Support Vector Machine (SVM). In conclusion, this study demonstrates the effectiveness of combining functional near infrared spectroscopy (fNIRS) with multiple machine learning models to accurately assess and quantify mental stress levels during prolonged space missions, providing a promising approach for early stress detection in astronauts.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10670317","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Integrated Framework for Infectious Disease Control Using Mathematical Modeling and Deep Learning 利用数学建模和深度学习的传染病控制综合框架
IF 2.7 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-09 DOI: 10.1109/OJEMB.2024.3455801
Mohammed Salman;Pradeep Kumar Das;Sanjay Kumar Mohanty
Infectious diseases are a major global public health concern. Precise modeling and prediction methods are essential to develop effective strategies for disease control. However, data imbalance and the presence of noise and intensity inhomogeneity make disease detection more challenging. Goal: In this article, a novel infectious disease pattern prediction system is proposed by integrating deterministic and stochastic model benefits with the benefits of the deep learning model. Results: The combined benefits yield improvement in the performance of solution prediction. Moreover, the objective is also to investigate the influence of time delay on infection rates and rates associated with vaccination. Conclusions: In this proposed framework, at first, the global stability at disease free equilibrium is effectively analysed using Routh-Haurwitz criteria and Lyapunov method, and the endemic equilibrium is analysed using non-linear Volterra integral equations in the infectious disease model. Unlike the existing model, emphasis is given to suggesting a model that is capable of investigating stability while considering the effect of vaccination and migration rate. Next, the influence of vaccination on the rate of infection is effectively predicted using an efficient deep learning model by employing the long-term dependencies in sequential data. Thus making the prediction more accurate.
传染病是全球主要的公共卫生问题。精确的建模和预测方法对于制定有效的疾病控制策略至关重要。然而,数据不平衡、噪声和强度不均匀性的存在使得疾病检测更具挑战性。目标:本文提出了一种新型传染病模式预测系统,将确定性和随机性模型的优势与深度学习模型的优势相结合。结果:综合优势提高了解决方案预测的性能。此外,目标还包括研究时间延迟对感染率和疫苗接种率的影响。结论:在这一拟议框架中,首先使用 Routh-Haurwitz 准则和 Lyapunov 方法有效分析了无疾病平衡的全局稳定性,并使用传染病模型中的非线性 Volterra 积分方程分析了流行平衡。与现有模型不同的是,重点在于提出一种能够在考虑疫苗接种和迁移率影响的同时研究稳定性的模型。接下来,通过利用序列数据中的长期依赖关系,使用高效的深度学习模型有效预测了疫苗接种对感染率的影响。从而使预测更加准确。
{"title":"An Integrated Framework for Infectious Disease Control Using Mathematical Modeling and Deep Learning","authors":"Mohammed Salman;Pradeep Kumar Das;Sanjay Kumar Mohanty","doi":"10.1109/OJEMB.2024.3455801","DOIUrl":"10.1109/OJEMB.2024.3455801","url":null,"abstract":"Infectious diseases are a major global public health concern. Precise modeling and prediction methods are essential to develop effective strategies for disease control. However, data imbalance and the presence of noise and intensity inhomogeneity make disease detection more challenging. \u0000<italic>Goal:</i>\u0000 In this article, a novel infectious disease pattern prediction system is proposed by integrating deterministic and stochastic model benefits with the benefits of the deep learning model. \u0000<italic>Results:</i>\u0000 The combined benefits yield improvement in the performance of solution prediction. Moreover, the objective is also to investigate the influence of time delay on infection rates and rates associated with vaccination. \u0000<italic>Conclusions:</i>\u0000 In this proposed framework, at first, the global stability at disease free equilibrium is effectively analysed using Routh-Haurwitz criteria and Lyapunov method, and the endemic equilibrium is analysed using non-linear Volterra integral equations in the infectious disease model. Unlike the existing model, emphasis is given to suggesting a model that is capable of investigating stability while considering the effect of vaccination and migration rate. Next, the influence of vaccination on the rate of infection is effectively predicted using an efficient deep learning model by employing the long-term dependencies in sequential data. Thus making the prediction more accurate.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669273","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Open Journal of Engineering in Medicine and Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1