{"title":"Input–Output Scheduling and Control for Efficient FPGA Realization of Digit-Serial Multiplication Over Generic Binary Extension Fields","authors":"Dibakar Pradhan, Pramod Kumar Meher, Bimal Kumar Meher","doi":"10.1007/s00034-024-02793-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose an energy-efficient design of architecture for digit-serial multiplication over generic GF(<span>\\(2^m\\)</span>), which could be used for different fields as and when required and to enhance the security by changing the fields. An efficient input scheduling scheme is proposed to reduce the required number of input pins and a digit extraction circuit for digit-serial multiplication. Besides, to reduce the dynamic power consumption, we have proposed a simple technique using an array of <i>m</i> AND gates that minimizes the output bit-switching. To study the impact of digit size, the digit-serial multipliers for <span>\\(m=163\\)</span> and 233 are synthesised by Xilinx Vivado for FPGA implementation. It is found that the required number of slices, power consumption, and energy per multiplication increase while the computational delay falls with the increase in digit size. Therefore, larger digit sizes could be considered only when fast multiplication is necessary. The array of AND gates for output bit control helps in reducing the dynamic power consumption and energy per multiplication, respectively, by 50.4% and 57.7% for <span>\\(m=163\\)</span> and <span>\\(49.8\\%\\)</span> and <span>\\(51.8\\%\\)</span>, for <span>\\(m=233\\)</span>, on average, for different digit sizes over the conventional least-significant-digit-first design.</p>","PeriodicalId":10227,"journal":{"name":"Circuits, Systems and Signal Processing","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circuits, Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00034-024-02793-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose an energy-efficient design of architecture for digit-serial multiplication over generic GF(\(2^m\)), which could be used for different fields as and when required and to enhance the security by changing the fields. An efficient input scheduling scheme is proposed to reduce the required number of input pins and a digit extraction circuit for digit-serial multiplication. Besides, to reduce the dynamic power consumption, we have proposed a simple technique using an array of m AND gates that minimizes the output bit-switching. To study the impact of digit size, the digit-serial multipliers for \(m=163\) and 233 are synthesised by Xilinx Vivado for FPGA implementation. It is found that the required number of slices, power consumption, and energy per multiplication increase while the computational delay falls with the increase in digit size. Therefore, larger digit sizes could be considered only when fast multiplication is necessary. The array of AND gates for output bit control helps in reducing the dynamic power consumption and energy per multiplication, respectively, by 50.4% and 57.7% for \(m=163\) and \(49.8\%\) and \(51.8\%\), for \(m=233\), on average, for different digit sizes over the conventional least-significant-digit-first design.
期刊介绍:
Rapid developments in the analog and digital processing of signals for communication, control, and computer systems have made the theory of electrical circuits and signal processing a burgeoning area of research and design. The aim of Circuits, Systems, and Signal Processing (CSSP) is to help meet the needs of outlets for significant research papers and state-of-the-art review articles in the area.
The scope of the journal is broad, ranging from mathematical foundations to practical engineering design. It encompasses, but is not limited to, such topics as linear and nonlinear networks, distributed circuits and systems, multi-dimensional signals and systems, analog filters and signal processing, digital filters and signal processing, statistical signal processing, multimedia, computer aided design, graph theory, neural systems, communication circuits and systems, and VLSI signal processing.
The Editorial Board is international, and papers are welcome from throughout the world. The journal is devoted primarily to research papers, but survey, expository, and tutorial papers are also published.
Circuits, Systems, and Signal Processing (CSSP) is published twelve times annually.