Enhancing the electronic properties of TiO2 nanoparticles through carbon doping: An integrated DFTB and computer vision approach

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-07-26 DOI:10.1016/j.commatsci.2024.113248
{"title":"Enhancing the electronic properties of TiO2 nanoparticles through carbon doping: An integrated DFTB and computer vision approach","authors":"","doi":"10.1016/j.commatsci.2024.113248","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, an innovative approach is explored that combines Density Functional Tight Binding (DFTB) with Computer Vision (CV) techniques to analyze the electronic structure and enhance the photocatalytic capabilities of carbon-doped titanium oxide nanoparticles (C-doped TiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> NPs). The findings reveal that C doping, in levels ranging from 0.1% to 0.6% progressively alters the material’s electronic structure and photocatalytic activity. Specifically, the energy gap decreases significantly from 3.160 eV for undoped TiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> to 0.565 eV at 0.6% doping, with no substantial changes observed beyond 0.6% doping. A notable correlation between increased C doping and a rise in total energy suggests a complex interaction between C incorporation and the energetic as well as structural dynamics of TiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> NPs. This interaction could enhance photocatalytic efficiency, especially under visible light, by reducing the band gap through C doping. The use of CV methodologies improves computational efficiency and predictive accuracy. These techniques validate the DFTB results and accelerate the material discovery process via machine learning models. The ability of CV methods to accurately predict the properties of C-doped TiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> NPs across various doping levels, combined with their computational advantages, represents a significant advancement in materials science.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624004695","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, an innovative approach is explored that combines Density Functional Tight Binding (DFTB) with Computer Vision (CV) techniques to analyze the electronic structure and enhance the photocatalytic capabilities of carbon-doped titanium oxide nanoparticles (C-doped TiO2 NPs). The findings reveal that C doping, in levels ranging from 0.1% to 0.6% progressively alters the material’s electronic structure and photocatalytic activity. Specifically, the energy gap decreases significantly from 3.160 eV for undoped TiO2 to 0.565 eV at 0.6% doping, with no substantial changes observed beyond 0.6% doping. A notable correlation between increased C doping and a rise in total energy suggests a complex interaction between C incorporation and the energetic as well as structural dynamics of TiO2 NPs. This interaction could enhance photocatalytic efficiency, especially under visible light, by reducing the band gap through C doping. The use of CV methodologies improves computational efficiency and predictive accuracy. These techniques validate the DFTB results and accelerate the material discovery process via machine learning models. The ability of CV methods to accurately predict the properties of C-doped TiO2 NPs across various doping levels, combined with their computational advantages, represents a significant advancement in materials science.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过碳掺杂增强 TiO2 纳米粒子的电子特性:综合 DFTB 和计算机视觉方法
本研究探索了一种将密度泛函紧密结合(DFTB)与计算机视觉(CV)技术相结合的创新方法,用于分析掺碳氧化钛纳米粒子(掺碳 TiO2 NPs)的电子结构并增强其光催化能力。研究结果表明,碳掺杂水平从 0.1% 到 0.6% 会逐渐改变材料的电子结构和光催化活性。具体来说,能隙从未曾掺杂的二氧化钛的 3.160 eV 显著下降到掺杂 0.6% 时的 0.565 eV,而掺杂 0.6% 之后则没有观察到实质性变化。C掺杂量的增加与总能量的上升之间存在明显的相关性,这表明 C 的掺入与 TiO2 NPs 的能量和结构动态之间存在复杂的相互作用。这种相互作用可以通过掺杂 C 减小带隙来提高光催化效率,尤其是在可见光下。CV 方法的使用提高了计算效率和预测精度。这些技术验证了 DFTB 结果,并通过机器学习模型加速了材料发现过程。CV 方法能够准确预测掺杂 C 的 TiO2 NPs 在不同掺杂水平下的特性,加上其计算优势,代表了材料科学的重大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
QuantumShellNet: Ground-state eigenvalue prediction of materials using electronic shell structures and fermionic properties via convolutions Computational insights into the tailoring of photoelectric properties in graphene quantum dot-Ru(II) polypyridyl nanocomposites Coexisting Type-I nodal Loop, Hybrid nodal loop and nodal surface in electride Li5Sn Effect of very slow O diffusion at high temperature on very fast H diffusion in the hydride ion conductor LaH2.75O0.125 Equivariance is essential, local representation is a need: A comprehensive and critical study of machine learning potentials for tobermorite phases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1