Resilience of coastal bridges under extreme wave-induced loads

Jesika Rahman, Vahid Aghaeidoost, AHM Muntasir Billah
{"title":"Resilience of coastal bridges under extreme wave-induced loads","authors":"Jesika Rahman,&nbsp;Vahid Aghaeidoost,&nbsp;AHM Muntasir Billah","doi":"10.1016/j.rcns.2024.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>Records of wave-induced damage on coastal bridges during natural hazards have been well documented over the past two decades. It is of utmost importance to decipher the loading mechanism and enhance the resilience of coastal bridges during extreme wave-inducing events. Quantification of vulnerability of these structures is an essential step in designing a resilient bridge system. Recently, considerable efforts have been made to study the force applied and the response of coastal bridge systems during extreme wave loading conditions. Although remarkable progress can be found in the quantification of load and response of coastal superstructures, very few studies assessed coastal bridge resiliency against extreme wave-induced loads. This paper adopts a simplified and practical technique to analyze and assess the resilience of coastal bridges exposed to extreme waves. Component-level and system-level fragility analyses form the basis of the resiliency analysis where the recovery functions are adopted based on the damage levels. It is shown that wave period has the highest contribution to the variation of bridge resiliency. Moreover, this study presents the uncertainty quantification in resiliency variation due to changes in wave load intensity. Results show that the bridge resiliency becomes more uncertain as the intensity of wave parameters increases. Finally, possible restoration strategies based on the desired resilience level and the attitude of decision-makers are also discussed.</p></div>","PeriodicalId":101077,"journal":{"name":"Resilient Cities and Structures","volume":"3 2","pages":"Pages 85-100"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772741624000292/pdfft?md5=1256cf731cf632a79d7b8c5c9a9a2540&pid=1-s2.0-S2772741624000292-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resilient Cities and Structures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772741624000292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Records of wave-induced damage on coastal bridges during natural hazards have been well documented over the past two decades. It is of utmost importance to decipher the loading mechanism and enhance the resilience of coastal bridges during extreme wave-inducing events. Quantification of vulnerability of these structures is an essential step in designing a resilient bridge system. Recently, considerable efforts have been made to study the force applied and the response of coastal bridge systems during extreme wave loading conditions. Although remarkable progress can be found in the quantification of load and response of coastal superstructures, very few studies assessed coastal bridge resiliency against extreme wave-induced loads. This paper adopts a simplified and practical technique to analyze and assess the resilience of coastal bridges exposed to extreme waves. Component-level and system-level fragility analyses form the basis of the resiliency analysis where the recovery functions are adopted based on the damage levels. It is shown that wave period has the highest contribution to the variation of bridge resiliency. Moreover, this study presents the uncertainty quantification in resiliency variation due to changes in wave load intensity. Results show that the bridge resiliency becomes more uncertain as the intensity of wave parameters increases. Finally, possible restoration strategies based on the desired resilience level and the attitude of decision-makers are also discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
沿海桥梁在极端波浪荷载作用下的恢复能力
在过去的二十年里,有关自然灾害期间波浪对沿海桥梁造成破坏的记录屡见不鲜。破译加载机制并提高沿海桥梁在极端波浪诱发事件中的抗灾能力至关重要。对这些结构的易损性进行量化是设计弹性桥梁系统的重要一步。最近,人们在研究沿海桥梁系统在极端波浪加载条件下的受力和响应方面做了大量的工 作。尽管在沿海上部结构的荷载和响应的量化方面取得了明显的进展,但很少有研究对沿海桥梁抵御极端波浪引起的荷载的能力进行评估。本文采用一种简化和实用的技术来分析和评估暴露在极端波浪中的海岸桥梁的韧性。构件级和系统级脆性分析构成了复原力分析的基础,复原力分析采用的复原函数是基于破坏程度的。结果表明,波浪周期对桥梁复原力变化的影响最大。此外,本研究还对波浪荷载强度变化导致的复原力变化进行了不确定性量化。结果表明,随着波浪参数强度的增加,桥梁复原力的不确定性也会增加。最后,还讨论了基于所需的复原力水平和决策者态度的可行修复策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
期刊最新文献
Automated knowledge graphs for complex systems (AutoGraCS): Applications to management of bridge networks Uncovering implicit Seismogenic associated regions towards promoting urban resilience Building Stock and Emission Models for Jakarta Key networks to create disaster resilient Smart Cities Mission: A case for remodeling India's Smart Cities Mission to include disaster resilience Landslide-oriented disaster resilience evaluation in mountainous cities: A case study in Chongqing, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1