{"title":"Binary metal–organic framework composites as environmentally friendly photocatalysts: Green synthesis and visible light-assisted pollutant degradation","authors":"","doi":"10.1016/j.jphotochem.2024.115916","DOIUrl":null,"url":null,"abstract":"<div><p>Green synthesis of MOF-on-MOF is an effective method to prepare the environmentally friendly photocatalyst using metal–organic frameworks (MOFs). Herein, ZIF-8 was synthesized on MIL-100 (Fe) (ZM composites) with different weight percent ratios of ZIF-8 and denoted as ZM21, ZM11 and ZM12. They were investigated as environmentally friendly photocatalysts for the degradation of Methylene Blue (MB) using visible light. XRD, FT-IR, SEM, EDX, and DRS were used to characterize the synthesized materials (ZIF-8, MIL-100, ZM21, ZM11, and ZM12). The ZM11 composite had the highest dye degradation ability. The MB photocatalytic degradation for the ZIF-8, MIL-100, ZM21, ZM11, and ZM12 were 12.59%, 31.27%, 29.45%, 86.3, and 31.51%, respectively. MB degradation by ZM11 composite followed the first-order kinetic model. The effective radical for the MB photocatalytic degradation was the superoxide radical (•O<sub>2</sub><sup>–</sup>). The ZM11 composite had the ability of 76% dye removal from water after 3 cycles of MB degradation.</p></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S101060302400460X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Green synthesis of MOF-on-MOF is an effective method to prepare the environmentally friendly photocatalyst using metal–organic frameworks (MOFs). Herein, ZIF-8 was synthesized on MIL-100 (Fe) (ZM composites) with different weight percent ratios of ZIF-8 and denoted as ZM21, ZM11 and ZM12. They were investigated as environmentally friendly photocatalysts for the degradation of Methylene Blue (MB) using visible light. XRD, FT-IR, SEM, EDX, and DRS were used to characterize the synthesized materials (ZIF-8, MIL-100, ZM21, ZM11, and ZM12). The ZM11 composite had the highest dye degradation ability. The MB photocatalytic degradation for the ZIF-8, MIL-100, ZM21, ZM11, and ZM12 were 12.59%, 31.27%, 29.45%, 86.3, and 31.51%, respectively. MB degradation by ZM11 composite followed the first-order kinetic model. The effective radical for the MB photocatalytic degradation was the superoxide radical (•O2–). The ZM11 composite had the ability of 76% dye removal from water after 3 cycles of MB degradation.
期刊介绍:
JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds.
All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor).
The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.