{"title":"Community-Level resilience analysis using earthquake-tsunami fragility surfaces","authors":"Mojtaba Harati, John W. van de Lindt","doi":"10.1016/j.rcns.2024.07.006","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduces an advanced community-level resilience analysis methodology integrating 3D fragility surfaces for combined successive earthquake-tsunami hazard and analysis. The methodology facilitates comprehensive evaluations of spatial damage, economic loss, and risk under multi-hazard conditions. This study compares earthquake-only analysis results to the successive earthquake-tsunami analysis at the community level to reveal – and quantify - significant disparities in damage and loss estimations between the analyses, emphasizing the need to consider both hazards in community planning even at lower seismic intensities. Critical assessment of the FEMA combinational rule demonstrates its limitations in accurately predicting losses and damage patterns at higher hazard intensities, highlighting the necessity for refined models that accurately account for hazard interactions. This research advances multi-hazard community-level resilience analysis by offering a robust framework for earthquake and tsunami assessment, underscoring the need for integration of detailed multi-hazard analyses into resilience planning. Finally, it suggests future directions for enhancing framework applicability across diverse community settings and structural types, aiming to improve community resilience.</p></div>","PeriodicalId":101077,"journal":{"name":"Resilient Cities and Structures","volume":"3 2","pages":"Pages 101-115"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772741624000334/pdfft?md5=c5c8f82051b494f00d6ddd67f71b3cf6&pid=1-s2.0-S2772741624000334-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resilient Cities and Structures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772741624000334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces an advanced community-level resilience analysis methodology integrating 3D fragility surfaces for combined successive earthquake-tsunami hazard and analysis. The methodology facilitates comprehensive evaluations of spatial damage, economic loss, and risk under multi-hazard conditions. This study compares earthquake-only analysis results to the successive earthquake-tsunami analysis at the community level to reveal – and quantify - significant disparities in damage and loss estimations between the analyses, emphasizing the need to consider both hazards in community planning even at lower seismic intensities. Critical assessment of the FEMA combinational rule demonstrates its limitations in accurately predicting losses and damage patterns at higher hazard intensities, highlighting the necessity for refined models that accurately account for hazard interactions. This research advances multi-hazard community-level resilience analysis by offering a robust framework for earthquake and tsunami assessment, underscoring the need for integration of detailed multi-hazard analyses into resilience planning. Finally, it suggests future directions for enhancing framework applicability across diverse community settings and structural types, aiming to improve community resilience.