Yeong-Man Kwon , Namgyu Noh , Kyun-Seong Dae , Yusra Qureshi , Ji-Hwan Kwon , Gye-Chun Cho , Ilhan Chang , Jong Min Yuk
{"title":"Effects of salinity on the microscopic interaction and sedimentation behavior of halloysite nanotube","authors":"Yeong-Man Kwon , Namgyu Noh , Kyun-Seong Dae , Yusra Qureshi , Ji-Hwan Kwon , Gye-Chun Cho , Ilhan Chang , Jong Min Yuk","doi":"10.1016/j.clay.2024.107511","DOIUrl":null,"url":null,"abstract":"<div><p>The response of clay minerals to changes in pore fluid salinity, particularly in coastal areas such as bays, lagoons, sounds, sloughs, and estuaries, has not been extensively studied. Herein, the influence of salinity exchange on the microscopic interaction and sedimentation behavior of halloysite nanotubes in an aqueous condition was investigated. In-situ microscopic observations and macro-scale sedimentation experiments reveal that halloysite nanotubes tend to disperse in pore fluids with high ionic strength because salt ions weaken the edge-to-face halloysite fabrics. Salinity exchange experiments demonstrate the permanent alteration of flocculation and sedimentation behavior due to the residual salt ions on the HNT surfaces. Even when the salt concentration is restored to its initial value, the presence of residual salts leads to the formation of a large and open floc structure, resulting in slower settling and a loosely packed final sediment. Our study provides a thorough understanding of the salt effect on sediment formation, including changes in the microscopic clay particle fabrics during salinity exchange.</p></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"260 ","pages":"Article 107511"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016913172400259X","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The response of clay minerals to changes in pore fluid salinity, particularly in coastal areas such as bays, lagoons, sounds, sloughs, and estuaries, has not been extensively studied. Herein, the influence of salinity exchange on the microscopic interaction and sedimentation behavior of halloysite nanotubes in an aqueous condition was investigated. In-situ microscopic observations and macro-scale sedimentation experiments reveal that halloysite nanotubes tend to disperse in pore fluids with high ionic strength because salt ions weaken the edge-to-face halloysite fabrics. Salinity exchange experiments demonstrate the permanent alteration of flocculation and sedimentation behavior due to the residual salt ions on the HNT surfaces. Even when the salt concentration is restored to its initial value, the presence of residual salts leads to the formation of a large and open floc structure, resulting in slower settling and a loosely packed final sediment. Our study provides a thorough understanding of the salt effect on sediment formation, including changes in the microscopic clay particle fabrics during salinity exchange.
期刊介绍:
Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as:
• Synthesis and purification
• Structural, crystallographic and mineralogical properties of clays and clay minerals
• Thermal properties of clays and clay minerals
• Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties
• Interaction with water, with polar and apolar molecules
• Colloidal properties and rheology
• Adsorption, Intercalation, Ionic exchange
• Genesis and deposits of clay minerals
• Geology and geochemistry of clays
• Modification of clays and clay minerals properties by thermal and physical treatments
• Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays)
• Modification by biological microorganisms. etc...