Chao Xu , Xingqing Zhao , Huaiyu Duan , Wei Gu , Du Zhang , Rucheng Wang , Xiancai Lu
{"title":"Mechanism of surfactant effect on bacterial adsorption during bioleaching of lepidolite","authors":"Chao Xu , Xingqing Zhao , Huaiyu Duan , Wei Gu , Du Zhang , Rucheng Wang , Xiancai Lu","doi":"10.1016/j.clay.2024.107646","DOIUrl":null,"url":null,"abstract":"<div><div>Direct contact of bacteria with minerals can provide better leaching effect than indirect contact in the process of bioleaching. As a leaching assistant, surfactant can change the surface tension of ore leaching solution, improve the bacterial adsorption capacity and enhance the biological leaching effect. Thus, this study investigated the mechanisms by which chemical and biological surfactants influence bacterial metabolism, bacterial adsorption, and leaching in the bioleaching process of lepidolite. With the addition of the biosurfactant rhamnolipid and chemical surfactants sodium dodecyl sulfate and Tween-20, FTIR of leaching residues indicated that non-polar functional groups appeared, and the contact angles decreased from 75.22° to 10.64°, 6.8°, 43.18°. Surfactants reduced the surface tension at the solid-liquid interface through the combined action of their hydrophilic head groups and hydrophobic tail groups, thereby increasing the contact area and adsorption efficiency between bacteria and minerals. Additionally, surfactants weaken the chemical bonds of mineral metals and promote the complexation of -COOH and -OH groups in organic acids with minerals. Surfactants-assisted bacterial attachment altered mineral lattice structure via microenvironment creation and bacterial metabolized organic acids.</div></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"264 ","pages":"Article 107646"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131724003946","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Direct contact of bacteria with minerals can provide better leaching effect than indirect contact in the process of bioleaching. As a leaching assistant, surfactant can change the surface tension of ore leaching solution, improve the bacterial adsorption capacity and enhance the biological leaching effect. Thus, this study investigated the mechanisms by which chemical and biological surfactants influence bacterial metabolism, bacterial adsorption, and leaching in the bioleaching process of lepidolite. With the addition of the biosurfactant rhamnolipid and chemical surfactants sodium dodecyl sulfate and Tween-20, FTIR of leaching residues indicated that non-polar functional groups appeared, and the contact angles decreased from 75.22° to 10.64°, 6.8°, 43.18°. Surfactants reduced the surface tension at the solid-liquid interface through the combined action of their hydrophilic head groups and hydrophobic tail groups, thereby increasing the contact area and adsorption efficiency between bacteria and minerals. Additionally, surfactants weaken the chemical bonds of mineral metals and promote the complexation of -COOH and -OH groups in organic acids with minerals. Surfactants-assisted bacterial attachment altered mineral lattice structure via microenvironment creation and bacterial metabolized organic acids.
期刊介绍:
Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as:
• Synthesis and purification
• Structural, crystallographic and mineralogical properties of clays and clay minerals
• Thermal properties of clays and clay minerals
• Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties
• Interaction with water, with polar and apolar molecules
• Colloidal properties and rheology
• Adsorption, Intercalation, Ionic exchange
• Genesis and deposits of clay minerals
• Geology and geochemistry of clays
• Modification of clays and clay minerals properties by thermal and physical treatments
• Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays)
• Modification by biological microorganisms. etc...