{"title":"Investigation on the structure evolution and combustion behavior of residual carbon from entrained-flow coal gasification fine slag after oxidation","authors":"","doi":"10.1016/j.apt.2024.104584","DOIUrl":null,"url":null,"abstract":"<div><p>Direct combustion of residual carbon (RC) from coal gasification fine slag (CGFS) is an effective way of energy recycling. Improving the combustion reactivity of RC is crucial for large-scale treatment of CGFS. In this study, the RC was modified by mild oxidation, and the evolution mechanism of the structures of RC in the oxidation process was analyzed, and the essential relationship between the structural characteristics and combustion behaviors of the oxidized RC was revealed. The research results show that the combustion behavior and structural characteristics of the oxidized RC are obviously improved. The combustion temperature range of some oxidized RC is significantly compressed, the time required for complete combustion is shorter than that of RC, and the activation energy of the combustion reaction decreases. Compared with air or CO<sub>2</sub> oxidation, air–steam shows a stronger oxidation effect on the structure of RC, while the oxidation effect of CO<sub>2</sub>-steam is weakened. The structural characteristics of the oxidized RC collectively determine its combustion reactivity. The RC oxidized by steam presents disordered carbon microcrystalline structure, well-developed pore structure and a high proportion of active groups, corresponding to the best combustion reaction activity. The excessive oxidation of RC by air–steam seems to destroy the dynamic balance between structural characteristics, which is also the main reason why the combustion reactivity of the corresponding oxidized RC is inhibited.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883124002607","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Direct combustion of residual carbon (RC) from coal gasification fine slag (CGFS) is an effective way of energy recycling. Improving the combustion reactivity of RC is crucial for large-scale treatment of CGFS. In this study, the RC was modified by mild oxidation, and the evolution mechanism of the structures of RC in the oxidation process was analyzed, and the essential relationship between the structural characteristics and combustion behaviors of the oxidized RC was revealed. The research results show that the combustion behavior and structural characteristics of the oxidized RC are obviously improved. The combustion temperature range of some oxidized RC is significantly compressed, the time required for complete combustion is shorter than that of RC, and the activation energy of the combustion reaction decreases. Compared with air or CO2 oxidation, air–steam shows a stronger oxidation effect on the structure of RC, while the oxidation effect of CO2-steam is weakened. The structural characteristics of the oxidized RC collectively determine its combustion reactivity. The RC oxidized by steam presents disordered carbon microcrystalline structure, well-developed pore structure and a high proportion of active groups, corresponding to the best combustion reaction activity. The excessive oxidation of RC by air–steam seems to destroy the dynamic balance between structural characteristics, which is also the main reason why the combustion reactivity of the corresponding oxidized RC is inhibited.
期刊介绍:
The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide.
The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them.
Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)