Tourism forecasting by mixed-frequency machine learning

IF 10.9 1区 管理学 Q1 ENVIRONMENTAL STUDIES Tourism Management Pub Date : 2024-07-29 DOI:10.1016/j.tourman.2024.105004
Mingming Hu , Mei Li , Yuxiu Chen , Han Liu
{"title":"Tourism forecasting by mixed-frequency machine learning","authors":"Mingming Hu ,&nbsp;Mei Li ,&nbsp;Yuxiu Chen ,&nbsp;Han Liu","doi":"10.1016/j.tourman.2024.105004","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to establish the nonlinear relationship between high frequency Baidu search volumes, low frequency tourist arrivals and dummy variables and proposes a mixed-frequency machine learning model: the Bidirectional Long Short-Term Memory Mixed Frequency Data Sampling (BiLSTM-MIDAS) model. The empirical results of forecasting weekly tourist arrivals to Kulangsu and Jiuzhaigou Valley in China demonstrate that (1) BiLSTM-MIDAS can outperform benchmark models, which is also confirmed during the COVID-19 pandemic period; (2) Compared with the MIDAS model, establishing the nonlinear relationship between high frequency Baidu search volumes, low frequency tourist arrivals and dummy variables using BiLSTM-MIDAS can improve the roles of high-frequency search engines in forecasting tourism demand. This study represents the first attempt to apply machine learning methods for tourism demand forecasting with mixed-frequency data.</p></div>","PeriodicalId":48469,"journal":{"name":"Tourism Management","volume":"106 ","pages":"Article 105004"},"PeriodicalIF":10.9000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0261517724001237/pdfft?md5=e0d7e2fbd59c2629c1349a72d427da87&pid=1-s2.0-S0261517724001237-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tourism Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0261517724001237","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to establish the nonlinear relationship between high frequency Baidu search volumes, low frequency tourist arrivals and dummy variables and proposes a mixed-frequency machine learning model: the Bidirectional Long Short-Term Memory Mixed Frequency Data Sampling (BiLSTM-MIDAS) model. The empirical results of forecasting weekly tourist arrivals to Kulangsu and Jiuzhaigou Valley in China demonstrate that (1) BiLSTM-MIDAS can outperform benchmark models, which is also confirmed during the COVID-19 pandemic period; (2) Compared with the MIDAS model, establishing the nonlinear relationship between high frequency Baidu search volumes, low frequency tourist arrivals and dummy variables using BiLSTM-MIDAS can improve the roles of high-frequency search engines in forecasting tourism demand. This study represents the first attempt to apply machine learning methods for tourism demand forecasting with mixed-frequency data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过混合频率机器学习进行旅游预测
本研究旨在建立高频百度搜索量、低频游客到达量和虚拟变量之间的非线性关系,并提出一种混合频率机器学习模型:双向长短期记忆混合频率数据采样(BiLSTM-MIDAS)模型。对中国库朗苏和九寨沟每周游客到达量的实证预测结果表明:(1)BiLSTM-MIDAS 的性能优于基准模型,这一点在 COVID-19 大流行期间也得到了证实;(2)与 MIDAS 模型相比,利用 BiLSTM-MIDAS 建立高频百度搜索量、低频游客到达量和虚拟变量之间的非线性关系,可以提高高频搜索引擎在旅游需求预测中的作用。本研究首次尝试将机器学习方法应用于混合频率数据的旅游需求预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tourism Management
Tourism Management Multiple-
CiteScore
24.10
自引率
7.90%
发文量
190
审稿时长
45 days
期刊介绍: Tourism Management, the preeminent scholarly journal, concentrates on the comprehensive management aspects, encompassing planning and policy, within the realm of travel and tourism. Adopting an interdisciplinary perspective, the journal delves into international, national, and regional tourism, addressing various management challenges. Its content mirrors this integrative approach, featuring primary research articles, progress in tourism research, case studies, research notes, discussions on current issues, and book reviews. Emphasizing scholarly rigor, all published papers are expected to contribute to theoretical and/or methodological advancements while offering specific insights relevant to tourism management and policy.
期刊最新文献
Mindset matters: Mitigating negative spillover effects in service failures Quality of life performance index for tourism destinations Releasing happiness: Influencing factors and configuration paths of shared accommodation customers’ positive emotions Dealing with travel influencers: Opportunity or threat? Peaks and troughs: Are heart rate cues more attractive to tourists?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1