Investigating various physical representations of Q-switched saturable absorbers using Green-Synthesized silver nanoparticles

IF 2.7 3区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Optical Fiber Technology Pub Date : 2024-08-01 DOI:10.1016/j.yofte.2024.103915
N.U.H.H. Zalkepali , T.J. Sang , T.J. Xuan , A.Z.M. Zamri , N.N.H.E.N. Mahmud , K.L. Mun , N.A. Awang
{"title":"Investigating various physical representations of Q-switched saturable absorbers using Green-Synthesized silver nanoparticles","authors":"N.U.H.H. Zalkepali ,&nbsp;T.J. Sang ,&nbsp;T.J. Xuan ,&nbsp;A.Z.M. Zamri ,&nbsp;N.N.H.E.N. Mahmud ,&nbsp;K.L. Mun ,&nbsp;N.A. Awang","doi":"10.1016/j.yofte.2024.103915","DOIUrl":null,"url":null,"abstract":"<div><p>We successfully investigate the generation of Q-switched pulses utilizing two distinct forms of silver nanoparticles (AgNPs): AgNPs thin film and AgNPs powder. Employing a green synthesis approach with AgNO3 and Oolong tea extract, AgNPs were fabricated as saturable absorbers (SAs) for Q-switching. The AgNPs thin film SA exhibited a remarkable repetition rate of 79.53 kHz, coupled with a pulse width of 2.38 µs and a pulse energy of 1.08 nJ. In contrast, AgNPs powder achieved a repetition rate of 40.53 kHz, a pulse width of 3.33 µs, and a pulse energy of 2.03 nJ. Notably, the AgNPs thin film demonstrated superior stability with a signal-to-noise ratio (SNR) of 55.07 dB compared to the powder’s SNR of 50.65 dB. These findings underscore the significant impact of the physical form of saturable absorbers on pulse characteristics, offering promising avenues for diverse applications in telecommunication, optical fiber sensors, and material processing. The novelty lies in comparing different physical forms of AgNPs as saturable absorbers, revealing distinct performance metrics and highlighting their potential for various technological applications.</p></div>","PeriodicalId":19663,"journal":{"name":"Optical Fiber Technology","volume":"87 ","pages":"Article 103915"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fiber Technology","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1068520024002608","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We successfully investigate the generation of Q-switched pulses utilizing two distinct forms of silver nanoparticles (AgNPs): AgNPs thin film and AgNPs powder. Employing a green synthesis approach with AgNO3 and Oolong tea extract, AgNPs were fabricated as saturable absorbers (SAs) for Q-switching. The AgNPs thin film SA exhibited a remarkable repetition rate of 79.53 kHz, coupled with a pulse width of 2.38 µs and a pulse energy of 1.08 nJ. In contrast, AgNPs powder achieved a repetition rate of 40.53 kHz, a pulse width of 3.33 µs, and a pulse energy of 2.03 nJ. Notably, the AgNPs thin film demonstrated superior stability with a signal-to-noise ratio (SNR) of 55.07 dB compared to the powder’s SNR of 50.65 dB. These findings underscore the significant impact of the physical form of saturable absorbers on pulse characteristics, offering promising avenues for diverse applications in telecommunication, optical fiber sensors, and material processing. The novelty lies in comparing different physical forms of AgNPs as saturable absorbers, revealing distinct performance metrics and highlighting their potential for various technological applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用绿色合成银纳米粒子研究 Q 开关可饱和吸收器的各种物理表示方法
我们成功研究了利用两种不同形式的银纳米粒子(AgNPs)产生 Q 开关脉冲:银纳米粒子薄膜和银纳米粒子粉末。通过使用 AgNO3 和乌龙茶提取物的绿色合成方法,AgNPs 被制作成用于 Q 开关的可饱和吸收体(SA)。AgNPs 薄膜 SA 的重复频率高达 79.53 kHz,脉冲宽度为 2.38 µs,脉冲能量为 1.08 nJ。相比之下,AgNPs 粉末的重复频率为 40.53 kHz,脉冲宽度为 3.33 µs,脉冲能量为 2.03 nJ。值得注意的是,AgNPs 薄膜的信噪比 (SNR) 为 55.07 dB,而粉末的信噪比为 50.65 dB,显示出更高的稳定性。这些发现强调了可饱和吸收体的物理形式对脉冲特性的重要影响,为电信、光纤传感器和材料加工领域的各种应用提供了广阔的前景。新颖之处在于比较了作为可饱和吸收体的 AgNPs 的不同物理形式,揭示了不同的性能指标,突出了它们在各种技术应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optical Fiber Technology
Optical Fiber Technology 工程技术-电信学
CiteScore
4.80
自引率
11.10%
发文量
327
审稿时长
63 days
期刊介绍: Innovations in optical fiber technology are revolutionizing world communications. Newly developed fiber amplifiers allow for direct transmission of high-speed signals over transcontinental distances without the need for electronic regeneration. Optical fibers find new applications in data processing. The impact of fiber materials, devices, and systems on communications in the coming decades will create an abundance of primary literature and the need for up-to-date reviews. Optical Fiber Technology: Materials, Devices, and Systems is a new cutting-edge journal designed to fill a need in this rapidly evolving field for speedy publication of regular length papers. Both theoretical and experimental papers on fiber materials, devices, and system performance evaluation and measurements are eligible, with emphasis on practical applications.
期刊最新文献
High security quantum noise-like stream cipher scheme with key accompanying transmission Spectrum allocation with wavelength conversion for enhanced spectral efficiency in multi-band elastic optical networks Stable mode-locking in extended cavities: A low-threshold EDFL empowered by AFI-zeolite-synthesized carbon nanotubes Multi-link weight metric-based routing approaches incorporating link length, resource availability, and penalization in MB-EONs Graphene oxide-based microfiber coupler for Q-switched fiber lasers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1