Jia Xu , Haoran Chen , Jiayi He , Min Nie , Hai Guo , Xin Liu
{"title":"Interfacial structure design of FeSiB-based amorphous soft magnetic composites for excellent thermal stability and electromagnetic performance","authors":"Jia Xu , Haoran Chen , Jiayi He , Min Nie , Hai Guo , Xin Liu","doi":"10.1016/j.apt.2024.104620","DOIUrl":null,"url":null,"abstract":"<div><p>Narrow process window of stress relieving annealing limits the development of amorphous soft magnetic composites (SMCs) with excellent combined electromagnetic performance. In addition, flaky amorphous powder is difficult to be uniformly coated by insulation layer due to the edge effect. To address these issues, the FeSiBCCr fine amorphous powder is introduced into the SMC based on flaky FeSiB amorphous powder. On the one hand, the 12 wt% addition of FeSiBCCr powder improves the thermal stability and enhances the annealing temperature by ∼ 20 ℃, broadening the annealing window of SMCs. On the other hand, the fine spherical FeSiBCCr amorphous powder can improve the electrical resistivity of SMC and act as a filler for large-size flaky FeSiB amorphous powder. The improved annealing temperature and the microstructure modification are beneficial to improving the combined electromagnetic properties of amorphous SMCs, including permeability, direct current bias performance and core loss. As a result, the FeSiB SMCs with 12 wt% FeSiBCCr addition possess the high effective permeability <em>μ</em><sub>e</sub> of 46.5 at 100 kHz, high percent effective permeability %<em>μ</em><sub>e</sub> of 74.5 % at 100 kHz and 100 Oe, and low total core loss of 222 kW/m<sup>3</sup> at 100 kHz and 50 mT. This work proposes a potential strategy for the industry to fabricate the SMCs with high combined electromagnetic performance.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 9","pages":"Article 104620"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883124002966","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Narrow process window of stress relieving annealing limits the development of amorphous soft magnetic composites (SMCs) with excellent combined electromagnetic performance. In addition, flaky amorphous powder is difficult to be uniformly coated by insulation layer due to the edge effect. To address these issues, the FeSiBCCr fine amorphous powder is introduced into the SMC based on flaky FeSiB amorphous powder. On the one hand, the 12 wt% addition of FeSiBCCr powder improves the thermal stability and enhances the annealing temperature by ∼ 20 ℃, broadening the annealing window of SMCs. On the other hand, the fine spherical FeSiBCCr amorphous powder can improve the electrical resistivity of SMC and act as a filler for large-size flaky FeSiB amorphous powder. The improved annealing temperature and the microstructure modification are beneficial to improving the combined electromagnetic properties of amorphous SMCs, including permeability, direct current bias performance and core loss. As a result, the FeSiB SMCs with 12 wt% FeSiBCCr addition possess the high effective permeability μe of 46.5 at 100 kHz, high percent effective permeability %μe of 74.5 % at 100 kHz and 100 Oe, and low total core loss of 222 kW/m3 at 100 kHz and 50 mT. This work proposes a potential strategy for the industry to fabricate the SMCs with high combined electromagnetic performance.
期刊介绍:
The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide.
The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them.
Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)