{"title":"Polyurethane: An Old Material for a New Generation of Antibiotic Spacer Implants","authors":"James W. Pritchett MD","doi":"10.1016/j.artd.2024.101409","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Polyurethane tibial and acetabular inserts that release high concentrations of antibiotics were used with debridement and implant retention to treat prosthetic joint infections. The hypothesis was that a low-friction, antibiotic-releasing bearing could provide a simpler, safer, and more patient-accepted treatment for infection using antibiotic cement and intravenous antibiotics.</p></div><div><h3>Methods</h3><p>Patients (n = 106) with culture-positive infections received antibiotic inserts. Vancomycin and tobramycin were mixed into the polyurethane polymer at 7% by weight. Contraindications to debridement antibiotics and implant retention were a sinus tract, loose prostheses, and/or the wound could not be closed. Measurable outcomes were success in controlling infection, complications, patient acceptable symptomatic state, and need for revision surgery. Antibiotic levels were measured in joint fluid and blood; laboratory mechanical wear tests were performed; and results were compared to bone cement and polyethylene containing antibiotics.</p></div><div><h3>Results</h3><p>Antibiotic-infused spacers sustained joint fluid antibiotic levels 8-12 times the therapeutic level and produced low serum levels with no toxicities. Mechanical testing showed low wear and retained mechanical integrity. All patients achieved complication-free remission of infection at a follow-up of 5-26 years. All patients had Harris hip and Knee Society scores above 85, and 68% achieved patient acceptable symptomatic state.</p></div><div><h3>Conclusions</h3><p>All patients achieved remission of infection, fewer complications compared to revision using antibiotic bone cement, no antibiotic toxicity or adverse drug reactions, and 68% achieved patient acceptance. The antibiotic polyurethane inserts provided antibacterial efficacy comparable with currently used bone cement spacers, and their wear rate was approximately 20 times lower than bone cement as an articulation.</p></div>","PeriodicalId":37940,"journal":{"name":"Arthroplasty Today","volume":"29 ","pages":"Article 101409"},"PeriodicalIF":1.5000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352344124000943/pdfft?md5=c771f0796a7bcd82387b0b7a91bfa72a&pid=1-s2.0-S2352344124000943-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthroplasty Today","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352344124000943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Polyurethane tibial and acetabular inserts that release high concentrations of antibiotics were used with debridement and implant retention to treat prosthetic joint infections. The hypothesis was that a low-friction, antibiotic-releasing bearing could provide a simpler, safer, and more patient-accepted treatment for infection using antibiotic cement and intravenous antibiotics.
Methods
Patients (n = 106) with culture-positive infections received antibiotic inserts. Vancomycin and tobramycin were mixed into the polyurethane polymer at 7% by weight. Contraindications to debridement antibiotics and implant retention were a sinus tract, loose prostheses, and/or the wound could not be closed. Measurable outcomes were success in controlling infection, complications, patient acceptable symptomatic state, and need for revision surgery. Antibiotic levels were measured in joint fluid and blood; laboratory mechanical wear tests were performed; and results were compared to bone cement and polyethylene containing antibiotics.
Results
Antibiotic-infused spacers sustained joint fluid antibiotic levels 8-12 times the therapeutic level and produced low serum levels with no toxicities. Mechanical testing showed low wear and retained mechanical integrity. All patients achieved complication-free remission of infection at a follow-up of 5-26 years. All patients had Harris hip and Knee Society scores above 85, and 68% achieved patient acceptable symptomatic state.
Conclusions
All patients achieved remission of infection, fewer complications compared to revision using antibiotic bone cement, no antibiotic toxicity or adverse drug reactions, and 68% achieved patient acceptance. The antibiotic polyurethane inserts provided antibacterial efficacy comparable with currently used bone cement spacers, and their wear rate was approximately 20 times lower than bone cement as an articulation.
期刊介绍:
Arthroplasty Today is a companion journal to the Journal of Arthroplasty. The journal Arthroplasty Today brings together the clinical and scientific foundations for joint replacement of the hip and knee in an open-access, online format. Arthroplasty Today solicits manuscripts of the highest quality from all areas of scientific endeavor that relate to joint replacement or the treatment of its complications, including those dealing with patient outcomes, economic and policy issues, prosthetic design, biomechanics, biomaterials, and biologic response to arthroplasty. The journal focuses on case reports. It is the purpose of Arthroplasty Today to present material to practicing orthopaedic surgeons that will keep them abreast of developments in the field, prove useful in the care of patients, and aid in understanding the scientific foundation of this subspecialty area of joint replacement. The international members of the Editorial Board provide a worldwide perspective for the journal''s area of interest. Their participation ensures that each issue of Arthroplasty Today provides the reader with timely, peer-reviewed articles of the highest quality.