{"title":"Fabrication of Bi2O3/In2O3 p-n heterojunction with enhanced photocatalytic activity by efficient interfacial charge transfer","authors":"Qin Qin , Tian Xiao , Xiaodong Zhu","doi":"10.1016/j.jscs.2024.101919","DOIUrl":null,"url":null,"abstract":"<div><p>Facilitating the separation of photogenerated charges is a crucial process in photocatalytic degradation of pollutants. In this study, Bi<sub>2</sub>O<sub>3</sub>/In<sub>2</sub>O<sub>3</sub> composites were prepared using a co-precipitation method and subsequently calcined at 400 ℃ for 1 h. The Mott-Schottky curves confirmed a p(Bi<sub>2</sub>O<sub>3</sub>)-n(In<sub>2</sub>O<sub>3</sub>) heterojunction was yielded. Due to the significant difference in Fermi levels between Bi<sub>2</sub>O<sub>3</sub> and In<sub>2</sub>O<sub>3</sub>, an internal electric field was established at the interface, with field lines directed from In<sub>2</sub>O<sub>3</sub> to Bi<sub>2</sub>O<sub>3</sub>. Under illumination, the excited electrons accumulated in the conduction band (CB) of In<sub>2</sub>O<sub>3</sub>, while holes gathered in the valence band (VB) of Bi<sub>2</sub>O<sub>3</sub>, promoting charge separation and enhancing quantum efficiency. The composite material exhibited the highest photocatalytic activity when the atomic percentage of Bi to In was 1:1, with the first-order reaction rate constant of BI-1 increasing to 0.0149 min<sup>−1</sup>, which is 4.3 and 4.4 multiples higher than that of pure In<sub>2</sub>O<sub>3</sub> and pure Bi<sub>2</sub>O<sub>3</sub>. Recycling experiments demonstrated that the photocatalytic composite possesses good reusability and structural stability.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 5","pages":"Article 101919"},"PeriodicalIF":5.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324001145/pdfft?md5=a6812a6dfdc54735aba5a0cc6589a639&pid=1-s2.0-S1319610324001145-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Saudi Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319610324001145","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Facilitating the separation of photogenerated charges is a crucial process in photocatalytic degradation of pollutants. In this study, Bi2O3/In2O3 composites were prepared using a co-precipitation method and subsequently calcined at 400 ℃ for 1 h. The Mott-Schottky curves confirmed a p(Bi2O3)-n(In2O3) heterojunction was yielded. Due to the significant difference in Fermi levels between Bi2O3 and In2O3, an internal electric field was established at the interface, with field lines directed from In2O3 to Bi2O3. Under illumination, the excited electrons accumulated in the conduction band (CB) of In2O3, while holes gathered in the valence band (VB) of Bi2O3, promoting charge separation and enhancing quantum efficiency. The composite material exhibited the highest photocatalytic activity when the atomic percentage of Bi to In was 1:1, with the first-order reaction rate constant of BI-1 increasing to 0.0149 min−1, which is 4.3 and 4.4 multiples higher than that of pure In2O3 and pure Bi2O3. Recycling experiments demonstrated that the photocatalytic composite possesses good reusability and structural stability.
期刊介绍:
Journal of Saudi Chemical Society is an English language, peer-reviewed scholarly publication in the area of chemistry. Journal of Saudi Chemical Society publishes original papers, reviews and short reports on, but not limited to:
•Inorganic chemistry
•Physical chemistry
•Organic chemistry
•Analytical chemistry
Journal of Saudi Chemical Society is the official publication of the Saudi Chemical Society and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.