{"title":"DFT studies on the performance of BN nanocage (B12N12) as adsorbent and sensor for fosfomycin","authors":"Mohammad Reza Jalali Sarvestani , Simin Arabi","doi":"10.1016/j.sajce.2024.08.005","DOIUrl":null,"url":null,"abstract":"<div><p>The investigation focused on exploring the potential applications of the BN nanocage (B<sub>12</sub>N<sub>12</sub>) as both an adsorbent and a sensor for removing and detecting fosfomycin (FM) using density functional theory computations. In this respect, the interaction of FM with B<sub>12</sub>N<sub>12</sub> was evaluated at 3 different configurations and the most stable one was determined. The results showcased the interaction between FM and B<sub>12</sub>N<sub>12</sub>, highlighting the feasibility, exothermic nature, and spontaneity of the interaction, emphasizing the effectiveness of B<sub>12</sub>N<sub>12</sub> as an FM adsorbent. Moreover, the study scrutinized the influence of water as a solvent and different temperatures on the thermodynamic parameters. Interestingly, the results indicated that these factors had negligible impacts on the interactions. Nonetheless, it was noted that the interactions were a bit stronger in vacuum and at lower temperatures. Additionally, the Frontier Molecular Orbital (FMO) analysis exhibited a bandgap of 6.716 eV for B<sub>12</sub>N<sub>12</sub>, which increased by approximately 90 % to 13.381 eV upon FM adsorption, indicating a significant reduction in the electrochemical conductivity of BN nanocage during the FM adsorption process, thereby hinting at its potential use as an analytical signal for the electrochemical detection of FM.</p></div>","PeriodicalId":21926,"journal":{"name":"South African Journal of Chemical Engineering","volume":"50 ","pages":"Pages 162-167"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1026918524000945/pdfft?md5=8c1d3ccbc6856c00aff81eb1d08c962c&pid=1-s2.0-S1026918524000945-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1026918524000945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The investigation focused on exploring the potential applications of the BN nanocage (B12N12) as both an adsorbent and a sensor for removing and detecting fosfomycin (FM) using density functional theory computations. In this respect, the interaction of FM with B12N12 was evaluated at 3 different configurations and the most stable one was determined. The results showcased the interaction between FM and B12N12, highlighting the feasibility, exothermic nature, and spontaneity of the interaction, emphasizing the effectiveness of B12N12 as an FM adsorbent. Moreover, the study scrutinized the influence of water as a solvent and different temperatures on the thermodynamic parameters. Interestingly, the results indicated that these factors had negligible impacts on the interactions. Nonetheless, it was noted that the interactions were a bit stronger in vacuum and at lower temperatures. Additionally, the Frontier Molecular Orbital (FMO) analysis exhibited a bandgap of 6.716 eV for B12N12, which increased by approximately 90 % to 13.381 eV upon FM adsorption, indicating a significant reduction in the electrochemical conductivity of BN nanocage during the FM adsorption process, thereby hinting at its potential use as an analytical signal for the electrochemical detection of FM.
期刊介绍:
The journal has a particular interest in publishing papers on the unique issues facing chemical engineering taking place in countries that are rich in resources but face specific technical and societal challenges, which require detailed knowledge of local conditions to address. Core topic areas are: Environmental process engineering • treatment and handling of waste and pollutants • the abatement of pollution, environmental process control • cleaner technologies • waste minimization • environmental chemical engineering • water treatment Reaction Engineering • modelling and simulation of reactors • transport phenomena within reacting systems • fluidization technology • reactor design Separation technologies • classic separations • novel separations Process and materials synthesis • novel synthesis of materials or processes, including but not limited to nanotechnology, ceramics, etc. Metallurgical process engineering and coal technology • novel developments related to the minerals beneficiation industry • coal technology Chemical engineering education • guides to good practice • novel approaches to learning • education beyond university.