Experimental study of damage modes of RC and RCS walls under combined loading of fragments and shock waves

IF 5.1 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Impact Engineering Pub Date : 2024-08-05 DOI:10.1016/j.ijimpeng.2024.105065
Sheng Zhang , Zhen-Qing Wang , Shu-Tao Li , Ye-Qing Chen , Long-Ming Chen , Zhen Gao , Shou-Ji Zhao
{"title":"Experimental study of damage modes of RC and RCS walls under combined loading of fragments and shock waves","authors":"Sheng Zhang ,&nbsp;Zhen-Qing Wang ,&nbsp;Shu-Tao Li ,&nbsp;Ye-Qing Chen ,&nbsp;Long-Ming Chen ,&nbsp;Zhen Gao ,&nbsp;Shou-Ji Zhao","doi":"10.1016/j.ijimpeng.2024.105065","DOIUrl":null,"url":null,"abstract":"<div><p>A pressing issue for reinforced concrete walls, which are commonly used as building structures, is how the fragments and shock waves generated by the explosion of a cased charge affect the concrete structure. In this paper, the damage modes of reinforced concrete walls (RC walls) and reinforced concrete-steel composite walls (RCS walls) under the combined loading of fragments and shock waves are investigated by experimental methods, and the effects of wall thickness, strength, stand-off distance, and thickness of the steel plate on the back on the damage modes of the walls are discussed. Based on the experimental data, the damage modes of the walls were classified into three classes. In comparison, the installation of steel plates on the back of concrete walls was found to be a significant means of protection, effectively preventing the penetration of metal fragments and the splashing of concrete fragments.</p></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":"194 ","pages":"Article 105065"},"PeriodicalIF":5.1000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Impact Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734743X24001891","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A pressing issue for reinforced concrete walls, which are commonly used as building structures, is how the fragments and shock waves generated by the explosion of a cased charge affect the concrete structure. In this paper, the damage modes of reinforced concrete walls (RC walls) and reinforced concrete-steel composite walls (RCS walls) under the combined loading of fragments and shock waves are investigated by experimental methods, and the effects of wall thickness, strength, stand-off distance, and thickness of the steel plate on the back on the damage modes of the walls are discussed. Based on the experimental data, the damage modes of the walls were classified into three classes. In comparison, the installation of steel plates on the back of concrete walls was found to be a significant means of protection, effectively preventing the penetration of metal fragments and the splashing of concrete fragments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碎片和冲击波联合加载下 RC 和 RCS 墙体破坏模式的实验研究
钢筋混凝土墙是常用的建筑结构,其迫切的问题是套管炸药爆炸产生的碎片和冲击波如何影响混凝土结构。本文通过实验方法研究了钢筋混凝土墙(RC 墙)和钢筋混凝土-钢复合墙(RCS 墙)在破片和冲击波联合加载下的破坏模式,并讨论了墙厚、强度、间距和背面钢板厚度对墙体破坏模式的影响。根据实验数据,将墙体的破坏模式分为三类。比较发现,在混凝土墙背面安装钢板是一种重要的保护手段,可有效防止金属碎片的穿透和混凝土碎片的飞溅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Impact Engineering
International Journal of Impact Engineering 工程技术-工程:机械
CiteScore
8.70
自引率
13.70%
发文量
241
审稿时长
52 days
期刊介绍: The International Journal of Impact Engineering, established in 1983 publishes original research findings related to the response of structures, components and materials subjected to impact, blast and high-rate loading. Areas relevant to the journal encompass the following general topics and those associated with them: -Behaviour and failure of structures and materials under impact and blast loading -Systems for protection and absorption of impact and blast loading -Terminal ballistics -Dynamic behaviour and failure of materials including plasticity and fracture -Stress waves -Structural crashworthiness -High-rate mechanical and forming processes -Impact, blast and high-rate loading/measurement techniques and their applications
期刊最新文献
Research on the evolution of state field and damage range of multiple source cloud explosions Effect of pre-shock on the expanding fracture behavior of 1045 steel cylindrical shell under internal explosive loading Editorial Board A comment on “Plasticity, ductile fracture and ballistic impact behavior of Ti-6Al-4V Alloy” by Wu et al. (2023), Int. J. Impact Eng. 174:104493 Tensile properties and constitutive modeling of Kevlar29 fibers: From filaments to bundles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1