Van-Lam Nguyen , Minh-Quan Doan , Ha Thi Dang , Dang Thi Hong Hue , Tinh Quoc Bui , Kyoungdoc Kim , Van-Hai Dinh , Le Van Lich
{"title":"Enhanced energy absorption in high entropy alloys with octet lattice nanostructures","authors":"Van-Lam Nguyen , Minh-Quan Doan , Ha Thi Dang , Dang Thi Hong Hue , Tinh Quoc Bui , Kyoungdoc Kim , Van-Hai Dinh , Le Van Lich","doi":"10.1016/j.ijsolstr.2024.113013","DOIUrl":null,"url":null,"abstract":"<div><p>The work focuses on the numerical investigation of compressive mechanical behaviors and energy absorption properties of high entropy alloys (HEAs) with stochastic bicontinuous nanostructures (SBNs) and octet nanostructures (ONs). The study reveals a strong correlation between mechanical behaviors and the relative density of the nanostructures. The findings show that for both ONs and SBNs, the plateau stress increases with increasing the relative density, while an opposite trend is observed for densification strain. The maximum energy absorption capacity is achieved for ONs and SBNs at a relative density 0.6. Additionally, the energy absorption capacity of ONs is higher than that of SBNs across all relative densities, attributed to the higher plateau stress in ONs compared to SBNs. The distinction in mechanical characteristics is further explored by considering the dislocation evolution in ONs and SBNs. The study shows in SBNs that the dislocation increases rapidly, leading to a significant release of stored elastic energy and low plateau stress. Conversely, in ONs, the dislocation increases monotonically, allowing for a gradual release of stored elastic energy and maintenance of high plateau stress. Furthermore, the evolution of atomic configurations demonstrates that intrinsic and extrinsic stacking faults dominate planar defects in ONs, while several types of planar defects play a role in SBNs, including intrinsic stacking fault, extrinsic stacking fault, twin boundary, and hexagonal close-packed laths. The study also shows the effect of temperature on the energy absorption capacity.</p></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"303 ","pages":"Article 113013"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002076832400372X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The work focuses on the numerical investigation of compressive mechanical behaviors and energy absorption properties of high entropy alloys (HEAs) with stochastic bicontinuous nanostructures (SBNs) and octet nanostructures (ONs). The study reveals a strong correlation between mechanical behaviors and the relative density of the nanostructures. The findings show that for both ONs and SBNs, the plateau stress increases with increasing the relative density, while an opposite trend is observed for densification strain. The maximum energy absorption capacity is achieved for ONs and SBNs at a relative density 0.6. Additionally, the energy absorption capacity of ONs is higher than that of SBNs across all relative densities, attributed to the higher plateau stress in ONs compared to SBNs. The distinction in mechanical characteristics is further explored by considering the dislocation evolution in ONs and SBNs. The study shows in SBNs that the dislocation increases rapidly, leading to a significant release of stored elastic energy and low plateau stress. Conversely, in ONs, the dislocation increases monotonically, allowing for a gradual release of stored elastic energy and maintenance of high plateau stress. Furthermore, the evolution of atomic configurations demonstrates that intrinsic and extrinsic stacking faults dominate planar defects in ONs, while several types of planar defects play a role in SBNs, including intrinsic stacking fault, extrinsic stacking fault, twin boundary, and hexagonal close-packed laths. The study also shows the effect of temperature on the energy absorption capacity.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.