Shuo Li , Qianfa Liu , Lijun Mao , Xin Zhang , Chunju Li , Da Ma
{"title":"Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine","authors":"Shuo Li , Qianfa Liu , Lijun Mao , Xin Zhang , Chunju Li , Da Ma","doi":"10.1016/j.cclet.2024.109791","DOIUrl":null,"url":null,"abstract":"<div><p>Reported here is the synthesis of a new macrocycle bearing anionic carboxylate groups with water-soluble aggregation-induced emission (AIE). The water-soluble macrocycle without typical AIE luminogens is constructed based on the building block of benzothiadiazole. It exhibits a remarkable AIE effect. This water-soluble macrocycle can selectively bind different types of biogenic amines in aqueous media with the tightest binding towards spermine. The fluorescence enhancement induced by supramolecular encapsulation is used to detect spermine.</p></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"35 11","pages":"Article 109791"},"PeriodicalIF":9.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841724003103","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Reported here is the synthesis of a new macrocycle bearing anionic carboxylate groups with water-soluble aggregation-induced emission (AIE). The water-soluble macrocycle without typical AIE luminogens is constructed based on the building block of benzothiadiazole. It exhibits a remarkable AIE effect. This water-soluble macrocycle can selectively bind different types of biogenic amines in aqueous media with the tightest binding towards spermine. The fluorescence enhancement induced by supramolecular encapsulation is used to detect spermine.
期刊介绍:
Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.