Biomimetic mineralization for carbon capture and sequestration

{"title":"Biomimetic mineralization for carbon capture and sequestration","authors":"","doi":"10.1016/j.ccst.2024.100257","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon mineralization is an emerging field of research in carbon sequestration. In this process, dissolved inorganic carbon reacts with mineral cations such as Ca<sup>2+</sup> and Mg<sup>2+</sup> to form stable carbonate minerals, enabling permanent carbon sequestration and storage. However, current mineralization methods predominantly rely on physicochemical approaches to expedite the mineralization of carbon. While effective, these methods require substantial chemical and energy consumption and may cause significant environmental impacts. Biomineralization has recently emerged as a sustainable alternative, leveraging biochemical reactions to catalyze CO<sub>2</sub> mineralization. This research focuses on investigating the specific roles of various biomolecules in natural carbon biomineralization and exploring state-of-the-art biomimetic carbon mineralization techniques, including whole-cell microbially induced carbonate precipitation (MICP) and cell-free systems, for carbon sequestration. In addition, we discuss various sources of mineral cations, ranging from natural minerals to industrial waste to seawater, along with their advantages and limitations. Our findings highlight the potential and feasibility of biological carbon mineralization processes to contribute towards sustainable carbon sequestration. However, we also identify challenges and propose future directions to guide further research and the application of these processes.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824000691/pdfft?md5=cc8fc313e000d6f4f57c39f83b68e346&pid=1-s2.0-S2772656824000691-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824000691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon mineralization is an emerging field of research in carbon sequestration. In this process, dissolved inorganic carbon reacts with mineral cations such as Ca2+ and Mg2+ to form stable carbonate minerals, enabling permanent carbon sequestration and storage. However, current mineralization methods predominantly rely on physicochemical approaches to expedite the mineralization of carbon. While effective, these methods require substantial chemical and energy consumption and may cause significant environmental impacts. Biomineralization has recently emerged as a sustainable alternative, leveraging biochemical reactions to catalyze CO2 mineralization. This research focuses on investigating the specific roles of various biomolecules in natural carbon biomineralization and exploring state-of-the-art biomimetic carbon mineralization techniques, including whole-cell microbially induced carbonate precipitation (MICP) and cell-free systems, for carbon sequestration. In addition, we discuss various sources of mineral cations, ranging from natural minerals to industrial waste to seawater, along with their advantages and limitations. Our findings highlight the potential and feasibility of biological carbon mineralization processes to contribute towards sustainable carbon sequestration. However, we also identify challenges and propose future directions to guide further research and the application of these processes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于碳捕获与封存的仿生矿化技术
碳矿化是碳封存的一个新兴研究领域。在这一过程中,溶解的无机碳与 Ca2+ 和 Mg2+ 等矿物阳离子发生反应,形成稳定的碳酸盐矿物,从而实现永久固碳和碳封存。然而,目前的矿化方法主要依靠物理化学方法来加速碳的矿化。这些方法虽然有效,但需要消耗大量的化学物质和能源,并可能对环境造成重大影响。最近出现的生物矿化法是一种可持续的替代方法,它利用生化反应催化二氧化碳矿化。本研究的重点是调查各种生物分子在天然碳生物矿化中的具体作用,并探索最先进的生物模拟碳矿化技术,包括用于碳封存的全细胞微生物诱导碳酸盐沉淀(MICP)和无细胞系统。此外,我们还讨论了从天然矿物、工业废料到海水等各种矿物阳离子来源及其优势和局限性。我们的研究结果凸显了生物碳矿化过程在促进可持续碳固存方面的潜力和可行性。不过,我们也发现了挑战,并提出了未来的方向,以指导进一步的研究和这些过程的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hypercrosslinked natural biopolymers with quasi-unimodal micropores for carbon capture Post-combustion CO2 capture retrofit from diesel-powered Arctic mines – Techno-economic and environmental assessment Carbon sequestration behavior of magnesium oxychloride cement based on salt lakes magnesium residue and industrial solid waste CO2 capture via subsurface mineralization geological settings and engineering perspectives towards long-term storage and decarbonization in the Middle East In-situ hydrogenation of dual function material for integrated CO2 capture and methanation with the presence of steam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1