Controlled Synthesis of Graphdiyne-Based Multiscale Catalysts for Energy Conversion

Siao Chen, Xuchen Zheng, Yang Gao, Xinyu Ping, Yurui Xue* and Yuliang Li*, 
{"title":"Controlled Synthesis of Graphdiyne-Based Multiscale Catalysts for Energy Conversion","authors":"Siao Chen,&nbsp;Xuchen Zheng,&nbsp;Yang Gao,&nbsp;Xinyu Ping,&nbsp;Yurui Xue* and Yuliang Li*,&nbsp;","doi":"10.1021/prechem.3c0012510.1021/prechem.3c00125","DOIUrl":null,"url":null,"abstract":"<p >Graphdiyne (GDY) science is a new and rapidly developing interdisciplinary field that touches on various areas of chemistry, physics, information science, material science, life science, environmental science, and so on. The rapid development of GDY science is part of the trend in development of carbon materials. GDY, with its unique structure and fascinating properties, has greatly promoted fundamental research toward practical applications of carbon materials. Many important applications, such as catalysis and energy conversion, have been reported. In particular, GDY has shown great potential for application in the field of catalysis. Scientists have precisely synthesized a series of GDY-based multiscale catalysts and applied them in various energy conversion and catalysis research, including ammonia synthesis, hydrogen production, CO<sub>2</sub> conversion, and chemical-to-electrical energy conversion. In this paper, we systematically review the advances in the precisely controlled synthesis of GDY and aggregated structures, and the latest progress with GDY in catalysis and energy conversion.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/prechem.3c00125","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/prechem.3c00125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Graphdiyne (GDY) science is a new and rapidly developing interdisciplinary field that touches on various areas of chemistry, physics, information science, material science, life science, environmental science, and so on. The rapid development of GDY science is part of the trend in development of carbon materials. GDY, with its unique structure and fascinating properties, has greatly promoted fundamental research toward practical applications of carbon materials. Many important applications, such as catalysis and energy conversion, have been reported. In particular, GDY has shown great potential for application in the field of catalysis. Scientists have precisely synthesized a series of GDY-based multiscale catalysts and applied them in various energy conversion and catalysis research, including ammonia synthesis, hydrogen production, CO2 conversion, and chemical-to-electrical energy conversion. In this paper, we systematically review the advances in the precisely controlled synthesis of GDY and aggregated structures, and the latest progress with GDY in catalysis and energy conversion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可控合成基于石墨二炔的多尺度能源转换催化剂
Graphdiyne(GDY)科学是一门新兴且发展迅速的交叉学科,涉及化学、物理学、信息科学、材料科学、生命科学、环境科学等多个领域。GDY 科学的快速发展是碳材料发展趋势的一部分。GDY 以其独特的结构和迷人的性能,极大地推动了碳材料的基础研究向实际应用发展。许多重要的应用,如催化和能源转换,都有报道。特别是,GDY 在催化领域显示出巨大的应用潜力。科学家们已经精确合成了一系列基于 GDY 的多尺度催化剂,并将其应用于各种能源转化和催化研究中,包括合成氨、制氢、二氧化碳转化和化学-电能转化。本文系统地综述了 GDY 和聚集结构的精确控制合成进展,以及 GDY 在催化和能源转化方面的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Precision Chemistry
Precision Chemistry 精密化学技术-
CiteScore
0.80
自引率
0.00%
发文量
0
期刊介绍: Chemical research focused on precision enables more controllable predictable and accurate outcomes which in turn drive innovation in measurement science sustainable materials information materials personalized medicines energy environmental science and countless other fields requiring chemical insights.Precision Chemistry provides a unique and highly focused publishing venue for fundamental applied and interdisciplinary research aiming to achieve precision calculation design synthesis manipulation measurement and manufacturing. It is committed to bringing together researchers from across the chemical sciences and the related scientific areas to showcase original research and critical reviews of exceptional quality significance and interest to the broad chemistry and scientific community.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Issue Editorial Masthead Issue Publication Information Precision Chemistry for Two-Dimensional Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1