Yi-Hua Chiang, Erin C. Berthold, Michelle A. Kuntz, Siva Rama Raju Kanumuri, Alexandria S. Senetra, Sushobhan Mukhopadhyay, Aidan J. Hampson, Christopher R. McCurdy and Abhisheak Sharma*,
{"title":"Multiple-Dose Pharmacokinetics and Safety of Mitragynine, the Major Alkaloid of Kratom, in Rats","authors":"Yi-Hua Chiang, Erin C. Berthold, Michelle A. Kuntz, Siva Rama Raju Kanumuri, Alexandria S. Senetra, Sushobhan Mukhopadhyay, Aidan J. Hampson, Christopher R. McCurdy and Abhisheak Sharma*, ","doi":"10.1021/acsptsci.4c0027710.1021/acsptsci.4c00277","DOIUrl":null,"url":null,"abstract":"<p >This study reports the steady-state pharmacokinetic parameters for mitragynine and characterizes its elimination in male and female rats. Four male and female rats were dosed q12h with 40 mg/kg, and orally administered mitragynine for 5 and 6 days, respectively. Using a validated ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method, the plasma concentrations of mitragynine, its metabolites (7-hydroxymitragynine, 9-hydroxycorynantheidine, and mitragynine acid), and a non-CYP oxidation product (3-dehydromitragynine) were determined at various time points. Sex differences in pharmacokinetics were observed, with females demonstrating significantly higher systemic exposure of mitragynine than males. The mitragynine area under the curve normalized by the dose interval (AUC/τ) was 6741.6 ± 869.5 h*ng/mL in female rats and 1808.9 ± 191.3 h*ng/mL in males (<i>p</i> < 0.05). Both sexes produced similar metabolite profiles; the major metabolites were mitragynine acid and 9-hydroxycorynantheidine. 7-Hydroxymitragynine was a minor metabolite. However, higher exposure (AUCs) and the maximum plasma concentrations (<i>C</i><sub>max</sub>) of active metabolites, 7-hydroxymitragynine and 9-hydroxycorynantheidine, were observed in female rats and exhibited substantial sex differences. Renal clearance of mitragynine (CL<sub>r</sub>) was low (0.64 ± 0.3 mL/h in males and 0.98 ± 0.4 mL/h in females), and unchanged mitragynine accounted for <1% of the dose excreted in feces (both sexes). The clinical chemistry, complete blood count, and hematological test results reported no abnormal hematological findings after multiple dosing in either sex.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 8","pages":"2452–2464 2452–2464"},"PeriodicalIF":4.9000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsptsci.4c00277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study reports the steady-state pharmacokinetic parameters for mitragynine and characterizes its elimination in male and female rats. Four male and female rats were dosed q12h with 40 mg/kg, and orally administered mitragynine for 5 and 6 days, respectively. Using a validated ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method, the plasma concentrations of mitragynine, its metabolites (7-hydroxymitragynine, 9-hydroxycorynantheidine, and mitragynine acid), and a non-CYP oxidation product (3-dehydromitragynine) were determined at various time points. Sex differences in pharmacokinetics were observed, with females demonstrating significantly higher systemic exposure of mitragynine than males. The mitragynine area under the curve normalized by the dose interval (AUC/τ) was 6741.6 ± 869.5 h*ng/mL in female rats and 1808.9 ± 191.3 h*ng/mL in males (p < 0.05). Both sexes produced similar metabolite profiles; the major metabolites were mitragynine acid and 9-hydroxycorynantheidine. 7-Hydroxymitragynine was a minor metabolite. However, higher exposure (AUCs) and the maximum plasma concentrations (Cmax) of active metabolites, 7-hydroxymitragynine and 9-hydroxycorynantheidine, were observed in female rats and exhibited substantial sex differences. Renal clearance of mitragynine (CLr) was low (0.64 ± 0.3 mL/h in males and 0.98 ± 0.4 mL/h in females), and unchanged mitragynine accounted for <1% of the dose excreted in feces (both sexes). The clinical chemistry, complete blood count, and hematological test results reported no abnormal hematological findings after multiple dosing in either sex.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.