Natacha Merindol, Luan Letieri Belem Martins, Ghada Elfayres, Alexandre Custeau, Lionel Berthoux, Antonio Evidente and Isabel Desgagné-Penix*,
{"title":"Amaryllidaceae Alkaloids Screen Unveils Potent Anticoronaviral Compounds and Associated Structural Determinants","authors":"Natacha Merindol, Luan Letieri Belem Martins, Ghada Elfayres, Alexandre Custeau, Lionel Berthoux, Antonio Evidente and Isabel Desgagné-Penix*, ","doi":"10.1021/acsptsci.4c0042410.1021/acsptsci.4c00424","DOIUrl":null,"url":null,"abstract":"<p >Betacoronaviruses encompass a spectrum of respiratory diseases, from common cold caused by the human coronavirus (HCoV)-OC43 to life-threatening severe acute respiratory syndrome (SARS)-CoV-2. Addressing the constant need for novel antiviral compounds, we turned to the exploration of 40 plant-specialized metabolites produced by the medicinal plant family Amaryllidaceae, known to produce lycorine, a strong antiviral alkaloid. The present screen included 35 alkaloids with representatives of 8 ring-type structures. Pancracine, crinamine, hemanthamine, and hemanthidine exhibited potency comparable to lycorine in blocking HCoV–OC43 replication, while amarbellisine demonstrated superior efficacy (SI = 60, EC<sub>50</sub> = 0.2 μM). Their anticoronaviral activity was confirmed using a SARS-CoV-2 replicon system. Time-of-drug-addition experiments established that a postentry step consistent with ribonucleic acid (RNA) replication or translation was targeted. Most antiviral Amaryllidaceae alkaloids selectively induced the expression of transcripts associated with the integrated stress response. Structure–activity relationship analyses elucidated key functional groups contributing to antiviral properties in the crinine- and lycorine-type. This study reveals that Amaryllidaceae produce a diverse repertoire of promising antiviral compounds in addition to lycorine, offering insights for developing new antiviral agents.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 11","pages":"3527–3539 3527–3539"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsptsci.4c00424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Betacoronaviruses encompass a spectrum of respiratory diseases, from common cold caused by the human coronavirus (HCoV)-OC43 to life-threatening severe acute respiratory syndrome (SARS)-CoV-2. Addressing the constant need for novel antiviral compounds, we turned to the exploration of 40 plant-specialized metabolites produced by the medicinal plant family Amaryllidaceae, known to produce lycorine, a strong antiviral alkaloid. The present screen included 35 alkaloids with representatives of 8 ring-type structures. Pancracine, crinamine, hemanthamine, and hemanthidine exhibited potency comparable to lycorine in blocking HCoV–OC43 replication, while amarbellisine demonstrated superior efficacy (SI = 60, EC50 = 0.2 μM). Their anticoronaviral activity was confirmed using a SARS-CoV-2 replicon system. Time-of-drug-addition experiments established that a postentry step consistent with ribonucleic acid (RNA) replication or translation was targeted. Most antiviral Amaryllidaceae alkaloids selectively induced the expression of transcripts associated with the integrated stress response. Structure–activity relationship analyses elucidated key functional groups contributing to antiviral properties in the crinine- and lycorine-type. This study reveals that Amaryllidaceae produce a diverse repertoire of promising antiviral compounds in addition to lycorine, offering insights for developing new antiviral agents.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.