Time geodesics on a slippery cross slope under gravitational wind

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Nonlinear Analysis-Real World Applications Pub Date : 2024-07-20 DOI:10.1016/j.nonrwa.2024.104177
{"title":"Time geodesics on a slippery cross slope under gravitational wind","authors":"","doi":"10.1016/j.nonrwa.2024.104177","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we pose and solve the time-optimal navigation problem considered on a slippery mountain slope modeled by a Riemannian manifold of an arbitrary dimension, under the action of a cross gravitational wind. The impact of both lateral and longitudinal components of gravitational wind on the time geodesics is discussed. The varying along-gravity effect depends on traction in the presented model, whereas the cross-gravity additive is taken entirely in the equations of motion, for any direction and gravity force. We obtain the conditions for strong convexity and the purely geometric solution to the problem is given by a new Finsler metric, which belongs to the type of general <span><math><mrow><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow></math></span>-metrics. The proposed model enables us to create a direct link between the Zermelo navigation problem and the slope-of-a-mountain problem under the action of a cross gravitational wind. Moreover, the behavior of the Finslerian indicatrices and time-minimizing trajectories in relation to the traction coefficient and gravitational wind force are explained and illustrated by a few examples in dimension two. This also compares the corresponding solutions on the slippery slopes under various cross- and along-gravity effects, including the classical Matsumoto’s slope-of-a-mountain problem and Zermelo’s navigation.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001172","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we pose and solve the time-optimal navigation problem considered on a slippery mountain slope modeled by a Riemannian manifold of an arbitrary dimension, under the action of a cross gravitational wind. The impact of both lateral and longitudinal components of gravitational wind on the time geodesics is discussed. The varying along-gravity effect depends on traction in the presented model, whereas the cross-gravity additive is taken entirely in the equations of motion, for any direction and gravity force. We obtain the conditions for strong convexity and the purely geometric solution to the problem is given by a new Finsler metric, which belongs to the type of general (α,β)-metrics. The proposed model enables us to create a direct link between the Zermelo navigation problem and the slope-of-a-mountain problem under the action of a cross gravitational wind. Moreover, the behavior of the Finslerian indicatrices and time-minimizing trajectories in relation to the traction coefficient and gravitational wind force are explained and illustrated by a few examples in dimension two. This also compares the corresponding solutions on the slippery slopes under various cross- and along-gravity effects, including the classical Matsumoto’s slope-of-a-mountain problem and Zermelo’s navigation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
引力风下滑动十字坡上的时间大地线
在这项研究中,我们提出并解决了在任意维度的黎曼流形模拟的湿滑山坡上,在横向引力风作用下的时间最优导航问题。讨论了引力风的横向和纵向分量对时间大地线的影响。在所提出的模型中,沿重力效应的变化取决于牵引力,而横向重力加成则完全在运动方程中考虑,适用于任何方向和重力。我们获得了强凸性条件,问题的纯几何解由一个新的芬斯勒度量给出,它属于一般(α,β)度量类型。所提出的模型使我们能够在交叉引力风作用下,在泽梅洛导航问题和山坡问题之间建立直接联系。此外,我们还解释了芬斯勒指标和时间最小化轨迹的行为与牵引系数和引力风力的关系,并通过一些二维的例子进行了说明。此外,还比较了各种交叉和沿重力效应下滑坡的相应解,包括经典的松本山坡问题和泽梅洛导航问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
期刊最新文献
Bifurcation and dynamics of periodic solutions of MEMS model with squeeze film damping On a planar equation involving (2,q)-Laplacian with zero mass and Trudinger–Moser nonlinearity Stability of inertial manifolds for semilinear parabolic equations under Lipschitz perturbations Singular non-autonomous (p,q)-equations with competing nonlinearities Existence of periodic and solitary waves of a Boussinesq equation under perturbations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1