Anas A. Bisu , Tariq G. Ahmed , Umar S. Ahmad , Abubakar D. Maiwada
{"title":"A SWOT Analysis Approach for the Development of Photovoltaic (PV) Energy in Northern Nigeria","authors":"Anas A. Bisu , Tariq G. Ahmed , Umar S. Ahmad , Abubakar D. Maiwada","doi":"10.1016/j.cles.2024.100128","DOIUrl":null,"url":null,"abstract":"<div><p>This research employs a comprehensive Strengths, Weaknesses, Opportunities, Threats (SWOT) analysis to investigate the advancement of photovoltaic (PV) energy in Northern Nigeria. The study delves into the intricacies of introducing PV systems within the context of economic challenges, including issues such as currency volatility and inflation, which amplify costs and impede capital investments. Environmental factors, such as dust and sandstorms, are identified as obstacles diminishing the efficiency of solar panels. Additionally, security concerns in remote areas elevate operational costs and influence investment decisions. This paper proposes effective mitigation strategies, encompassing widespread public awareness campaigns to augment market engagement, the establishment of mini-grid systems for enhanced energy distribution, customised on-the-job training programs to foster local expertise in PV technology, and the utilisation of micro-grid systems as experimental grounds for regulatory and policy testing. By synthesising these components, the study offers a comprehensive overview of the prerequisites essential for the successful proliferation of PV energy in Northern Nigeria. Emphasis is placed on the potential for solar energy to significantly contribute to the region's sustainable development and achieve energy independence when the identified strength, and opportunities are exploited. The key strength identified are the average Global horizontal irradiance (GHI) of 5.436 kWh/m<sup>2</sup>, Direct Normal Irradiance (DNI) of 1534–1680 kWh/m<sup>2</sup>, Levelised Cost of Electricity (LCoE) of $ 0.1, and an opportunity to fully utilise the over $ 7.88 million grant authorised by the African Development Bank (AfDB) from the Sustainable Energy Fund for Africa.</p></div>","PeriodicalId":100252,"journal":{"name":"Cleaner Energy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772783124000220/pdfft?md5=5ad76d8050fa4517244a11767e5a1f55&pid=1-s2.0-S2772783124000220-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772783124000220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This research employs a comprehensive Strengths, Weaknesses, Opportunities, Threats (SWOT) analysis to investigate the advancement of photovoltaic (PV) energy in Northern Nigeria. The study delves into the intricacies of introducing PV systems within the context of economic challenges, including issues such as currency volatility and inflation, which amplify costs and impede capital investments. Environmental factors, such as dust and sandstorms, are identified as obstacles diminishing the efficiency of solar panels. Additionally, security concerns in remote areas elevate operational costs and influence investment decisions. This paper proposes effective mitigation strategies, encompassing widespread public awareness campaigns to augment market engagement, the establishment of mini-grid systems for enhanced energy distribution, customised on-the-job training programs to foster local expertise in PV technology, and the utilisation of micro-grid systems as experimental grounds for regulatory and policy testing. By synthesising these components, the study offers a comprehensive overview of the prerequisites essential for the successful proliferation of PV energy in Northern Nigeria. Emphasis is placed on the potential for solar energy to significantly contribute to the region's sustainable development and achieve energy independence when the identified strength, and opportunities are exploited. The key strength identified are the average Global horizontal irradiance (GHI) of 5.436 kWh/m2, Direct Normal Irradiance (DNI) of 1534–1680 kWh/m2, Levelised Cost of Electricity (LCoE) of $ 0.1, and an opportunity to fully utilise the over $ 7.88 million grant authorised by the African Development Bank (AfDB) from the Sustainable Energy Fund for Africa.