T-cell receptor binding prediction: A machine learning revolution

Anna Weber , Aurélien Pélissier , María Rodríguez Martínez
{"title":"T-cell receptor binding prediction: A machine learning revolution","authors":"Anna Weber ,&nbsp;Aurélien Pélissier ,&nbsp;María Rodríguez Martínez","doi":"10.1016/j.immuno.2024.100040","DOIUrl":null,"url":null,"abstract":"<div><p>Recent advancements in immune sequencing and experimental techniques are generating extensive T cell receptor (TCR) repertoire data, enabling the development of models to predict TCR binding specificity. Despite the computational challenges posed by the vast diversity of TCRs and epitopes, significant progress has been made. This review explores the evolution of computational models designed for this task, emphasizing machine learning efforts, including early unsupervised clustering approaches, supervised models, and recent applications of Protein Language Models (PLMs), deep learning models pretrained on extensive collections of unlabeled protein sequences that capture crucial biological properties.</p><p>We survey the most prominent models in each category and offer a critical discussion on recurrent challenges, including the lack of generalization to new epitopes, dataset biases, and shortcomings in model validation designs. Focusing on PLMs, we discuss the transformative impact of Transformer-based protein models in bioinformatics, particularly in TCR specificity analysis. We discuss recent studies that exploit PLMs to deliver notably competitive performances in TCR-related tasks, while also examining current limitations and future directions. Lastly, we address the pressing need for improved interpretability in these often opaque models, and examine current efforts to extract biological insights from large black box models.</p></div>","PeriodicalId":73343,"journal":{"name":"Immunoinformatics (Amsterdam, Netherlands)","volume":"15 ","pages":"Article 100040"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667119024000107/pdfft?md5=d53078634a01ebcc5850282ff7db1fa1&pid=1-s2.0-S2667119024000107-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunoinformatics (Amsterdam, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667119024000107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in immune sequencing and experimental techniques are generating extensive T cell receptor (TCR) repertoire data, enabling the development of models to predict TCR binding specificity. Despite the computational challenges posed by the vast diversity of TCRs and epitopes, significant progress has been made. This review explores the evolution of computational models designed for this task, emphasizing machine learning efforts, including early unsupervised clustering approaches, supervised models, and recent applications of Protein Language Models (PLMs), deep learning models pretrained on extensive collections of unlabeled protein sequences that capture crucial biological properties.

We survey the most prominent models in each category and offer a critical discussion on recurrent challenges, including the lack of generalization to new epitopes, dataset biases, and shortcomings in model validation designs. Focusing on PLMs, we discuss the transformative impact of Transformer-based protein models in bioinformatics, particularly in TCR specificity analysis. We discuss recent studies that exploit PLMs to deliver notably competitive performances in TCR-related tasks, while also examining current limitations and future directions. Lastly, we address the pressing need for improved interpretability in these often opaque models, and examine current efforts to extract biological insights from large black box models.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
T 细胞受体结合预测:机器学习革命
免疫测序和实验技术的最新进展正在产生大量的 T 细胞受体(TCR)谱系数据,从而能够开发出预测 TCR 结合特异性的模型。尽管 TCR 和表位的多样性给计算带来了挑战,但我们还是取得了重大进展。这篇综述探讨了为这一任务设计的计算模型的演变,强调了机器学习的努力,包括早期的无监督聚类方法、有监督模型和蛋白质语言模型(PLM)的最新应用,PLM是在大量未标记的蛋白质序列集合上预先训练的深度学习模型,能捕捉关键的生物学特性。我们调查了每个类别中最突出的模型,并对反复出现的挑战进行了批判性讨论,包括缺乏对新表位的泛化、数据集偏差和模型验证设计的缺陷。以 PLM 为重点,我们讨论了基于 Transformer 的蛋白质模型在生物信息学中的变革性影响,尤其是在 TCR 特异性分析中。我们讨论了近期利用 PLM 在 TCR 相关任务中取得显著竞争力的研究,同时还探讨了当前的局限性和未来的发展方向。最后,我们探讨了提高这些通常不透明的模型可解释性的迫切需要,并考察了目前从大型黑盒模型中提取生物学见解的努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Immunoinformatics (Amsterdam, Netherlands)
Immunoinformatics (Amsterdam, Netherlands) Immunology, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
60 days
期刊最新文献
Scifer: An R/Bioconductor package for large-scale integration of Sanger sequencing and flow cytometry data of index-sorted single cells Lessons learned from the IMMREP23 TCR-epitope prediction challenge Multicohort analysis identifies conserved transcriptional interactions between humans and Plasmodium falciparum In silico modelling of CD8 T cell immune response links genetic regulation to population dynamics Data mining antibody sequences for database searching in bottom-up proteomics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1