首页 > 最新文献

Immunoinformatics (Amsterdam, Netherlands)最新文献

英文 中文
Molecular mimicry impact of the COVID-19 pandemic: Sequence homology between SARS-CoV-2 and autoimmune diseases epitopes
Pub Date : 2025-03-13 DOI: 10.1016/j.immuno.2025.100050
Pablo Maldonado-Catala , Ram Gouripeddi , Naomi Schlesinger , Julio C. Facelli
Molecular mimicry is one mechanism by which an infectious agent may trigger an autoimmune disease in a human subject and occurs when foreign- and self-peptides contain similar epitopes that activate an autoimmune response in a susceptible individual. Here, we employ a scalable in-silico approach, to identify 861 pairs of known SARS-CoV-2 and autoimmune disease epitopes, out of more than one billion possible pairs. These SARS-CoV-2 epitopes show 1) sequence homology to human autoimmune disorder epitopes, 2) empirical binding data that predict that they bind the same major histocompatibility complex (MHC) molecule and 3) exhibit high empirical immunogenicity. Analysis of these epitope pairs reveals an association between autoimmune disorders, such as type 1 diabetes, autoimmune uveitis, ankylosing spondylitis, and SARS-CoV-2 infection. These associations are consistent with those reported in the literature from the analysis of clinical records.
{"title":"Molecular mimicry impact of the COVID-19 pandemic: Sequence homology between SARS-CoV-2 and autoimmune diseases epitopes","authors":"Pablo Maldonado-Catala ,&nbsp;Ram Gouripeddi ,&nbsp;Naomi Schlesinger ,&nbsp;Julio C. Facelli","doi":"10.1016/j.immuno.2025.100050","DOIUrl":"10.1016/j.immuno.2025.100050","url":null,"abstract":"<div><div>Molecular mimicry is one mechanism by which an infectious agent may trigger an autoimmune disease in a human subject and occurs when foreign- and self-peptides contain similar epitopes that activate an autoimmune response in a susceptible individual. Here, we employ a scalable in-silico approach, to identify 861 pairs of known SARS-CoV-2 and autoimmune disease epitopes, out of more than one billion possible pairs. These SARS-CoV-2 epitopes show 1) sequence homology to human autoimmune disorder epitopes, 2) empirical binding data that predict that they bind the same major histocompatibility complex (MHC) molecule and 3) exhibit high empirical immunogenicity. Analysis of these epitope pairs reveals an association between autoimmune disorders, such as type 1 diabetes, autoimmune uveitis, ankylosing spondylitis, and SARS-CoV-2 infection. These associations are consistent with those reported in the literature from the analysis of clinical records.</div></div>","PeriodicalId":73343,"journal":{"name":"Immunoinformatics (Amsterdam, Netherlands)","volume":"18 ","pages":"Article 100050"},"PeriodicalIF":0.0,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143642266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering the role of molecular mimicry in the etiopathogenesis of Autoimmune Hemolytic Anemia using an immunoinformatics approach.
Pub Date : 2025-02-06 DOI: 10.1016/j.immuno.2025.100047
Pratyusha Patidar , Arihant Jain , Tulika Prakash
Autoimmune hemolytic anemia (AIHA) is a chronic autoimmune disease characterized by the self-destruction of red blood cells (RBCs). For investigating the role molecular mimicry in the onset of AIHA manifestations, we identified the microbial epitopes as precipitating factors in the disease etiopathology using an integrated immunoinformatics pipeline which includes sequence homology search between microbial and RBC proteins, followed by B-cell and T-cell epitope prediction. These epitopes were further subjected to a homology search with the human gut microbial proteins. Eight out of the ten analysed infectious agents, including Hepatitis C Virus (HCV), Cytomegalovirus (CMV), Epstein-Barr Virus (EBV), Herpes Simplex Virus (HSV), Human Papillomavirus (HPV), Human Immunodeficiency Virus (HIV), Mycoplasma pneumoniae (MP), and Treponema pallidum (TP), possessed B-cell and T-cell epitopes. Interestingly, EBV, HSV, MP, and TP displayed conformational B-cell epitopes, which overlapped with their linear B-cell epitopes. HLA DRB1_0305 was found to exhibit binding with several bacterial epitopes indicating its predisposing potential to AIHA. Further, we report cross-reactive microbial epitopes against RBC proteins that have been experimentally proven to be associated with AIHA indicating a high possibility of those epitopes causing AIHA. Additionally, many B-cell and T-cell epitopes exhibited exact homologies with various human gut microbial proteins. The functional annotation highlighted the involvement of specialized RBC functions, such as cytoskeleton organization, ammonium homeostasis, signalling transduction, in the underlying disease mechanism. These findings suggest that infection-causing pathogens and gut microbes might have a plausible association with AIHA in the context of molecular mimicry.
{"title":"Deciphering the role of molecular mimicry in the etiopathogenesis of Autoimmune Hemolytic Anemia using an immunoinformatics approach.","authors":"Pratyusha Patidar ,&nbsp;Arihant Jain ,&nbsp;Tulika Prakash","doi":"10.1016/j.immuno.2025.100047","DOIUrl":"10.1016/j.immuno.2025.100047","url":null,"abstract":"<div><div>Autoimmune hemolytic anemia (AIHA) is a chronic autoimmune disease characterized by the self-destruction of red blood cells (RBCs). For investigating the role molecular mimicry in the onset of AIHA manifestations, we identified the microbial epitopes as precipitating factors in the disease etiopathology using an integrated immunoinformatics pipeline which includes sequence homology search between microbial and RBC proteins, followed by B-cell and T-cell epitope prediction. These epitopes were further subjected to a homology search with the human gut microbial proteins. Eight out of the ten analysed infectious agents, including Hepatitis C Virus (HCV), Cytomegalovirus (CMV), Epstein-Barr Virus (EBV), Herpes Simplex Virus (HSV), Human Papillomavirus (HPV), Human Immunodeficiency Virus (HIV), <em>Mycoplasma pneumoniae</em> (MP), and <em>Treponema pallidum</em> (TP), possessed B-cell and T-cell epitopes. Interestingly, EBV, HSV, MP, and TP displayed conformational B-cell epitopes, which overlapped with their linear B-cell epitopes. HLA DRB1_0305 was found to exhibit binding with several bacterial epitopes indicating its predisposing potential to AIHA. Further, we report cross-reactive microbial epitopes against RBC proteins that have been experimentally proven to be associated with AIHA indicating a high possibility of those epitopes causing AIHA. Additionally, many B-cell and T-cell epitopes exhibited exact homologies with various human gut microbial proteins. The functional annotation highlighted the involvement of specialized RBC functions, such as cytoskeleton organization, ammonium homeostasis, signalling transduction, in the underlying disease mechanism. These findings suggest that infection-causing pathogens and gut microbes might have a plausible association with AIHA in the context of molecular mimicry.</div></div>","PeriodicalId":73343,"journal":{"name":"Immunoinformatics (Amsterdam, Netherlands)","volume":"17 ","pages":"Article 100047"},"PeriodicalIF":0.0,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143395696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of SLA-1 and SLA-2 genetic diversity in exotic, hybrid, and local pig breeds of Cameroon in relation to adaptive immunity against African swine virus
Pub Date : 2025-02-06 DOI: 10.1016/j.immuno.2025.100048
Ebanja Joseph Ebwanga , Jess Bouhuijzen Wenger , Robert Adamu Shey , Nadine Buys , Rob Lavigne , Stephen Mbigha Ghogomu , Jan Paeshuyse
African swine fever is a severe hemorrhagic swine disease that greatly affects smallholder pig farm productivity in low-income countries as well as some developed countries. Research has shown that the indigenous pigs and wild suids in Africa are either tolerant or resistant to the disease. Also, resistance to disease and favourable production traits are attributed to polymorphism within the major histocompatibility complex (MHC), which is crucial for the vertebrate's adaptive immune response. The polymorphism within the swine leukocyte antigen (SLA) is attributable to host-pathogen co-evolution which results in improved resistance to disease as well as adaptation to diverse environments. While this makes the SLA essential for comparative diversity studies, comparative SLA studies are absent in this context. We undertook SLA-1 and SLA-2 exon-2 comparative genetic diversity study within the locally adapted (local) breed, hybrid (a cross between local and exotic), and the exotic breed of pigs in Cameroon using the polymerase chain reaction sequence-based typing method on 41 animals. Our data analyses provide evidence of positive balancing selection as well as conserved private alleles within the local breeds, the highest expected heterozygosity within the tolerant population while the exotic population had the highest number of haplotypes for both SLA-1 and SLA-2 . The results from this study contribute to our expanding knowledge of SLA genetic diversity while providing the first SLA data for the indigenous and exotic breeds of pigs in Cameroon.
{"title":"Comparative analysis of SLA-1 and SLA-2 genetic diversity in exotic, hybrid, and local pig breeds of Cameroon in relation to adaptive immunity against African swine virus","authors":"Ebanja Joseph Ebwanga ,&nbsp;Jess Bouhuijzen Wenger ,&nbsp;Robert Adamu Shey ,&nbsp;Nadine Buys ,&nbsp;Rob Lavigne ,&nbsp;Stephen Mbigha Ghogomu ,&nbsp;Jan Paeshuyse","doi":"10.1016/j.immuno.2025.100048","DOIUrl":"10.1016/j.immuno.2025.100048","url":null,"abstract":"<div><div>African swine fever is a severe hemorrhagic swine disease that greatly affects smallholder pig farm productivity in low-income countries as well as some developed countries. Research has shown that the indigenous pigs and wild suids in Africa are either tolerant or resistant to the disease. Also, resistance to disease and favourable production traits are attributed to polymorphism within the major histocompatibility complex (MHC), which is crucial for the vertebrate's adaptive immune response. The polymorphism within the swine leukocyte antigen (SLA) is attributable to host-pathogen co-evolution which results in improved resistance to disease as well as adaptation to diverse environments. While this makes the SLA essential for comparative diversity studies, comparative SLA studies are absent in this context. We undertook SLA-1 and SLA-2 exon-2 comparative genetic diversity study within the locally adapted (local) breed, hybrid (a cross between local and exotic), and the exotic breed of pigs in Cameroon using the polymerase chain reaction sequence-based typing method on 41 animals. Our data analyses provide evidence of positive balancing selection as well as conserved private alleles within the local breeds, the highest expected heterozygosity within the tolerant population while the exotic population had the highest number of haplotypes for both SLA-1 and SLA-2 . The results from this study contribute to our expanding knowledge of SLA genetic diversity while providing the first SLA data for the indigenous and exotic breeds of pigs in Cameroon.</div></div>","PeriodicalId":73343,"journal":{"name":"Immunoinformatics (Amsterdam, Netherlands)","volume":"17 ","pages":"Article 100048"},"PeriodicalIF":0.0,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143453878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scifer: An R/Bioconductor package for large-scale integration of Sanger sequencing and flow cytometry data of index-sorted single cells Scifer:用于大规模整合桑格测序和流式细胞仪指数分选单细胞数据的 R/Bioconductor 软件包
Pub Date : 2024-10-29 DOI: 10.1016/j.immuno.2024.100046
Rodrigo Arcoverde Cerveira , Klara Lenart , Marcel Martin , Matthew James Hinchcliff , Fredrika Hellgren , Kewei Ye , Juliana Assis Geraldo , Taras Kreslavsky , Sebastian Ols , Karin Loré
Sanger sequencing remains widely used in various experimental contexts, often in combination with flow cytometry for indexing specific cell populations. However, existing software lacks the capability to automate quality control (QC) of raw Sanger sequencing data and integrate it with flow cytometry information on a large scale. Here, we introduce scifer, an R package now available in the latest release of Bioconductor (3.20) showcasing its effectiveness in seamlessly integrating these types of data as demonstrated by analyses of B cell and T cell receptor sequences. Scifer preprocesses raw data from index sorts and immune receptor Sanger sequencing. It identifies high-quality sequences based on selected parameters, such as length, Phred scores, and heavy-chain complementarity-determining region 3 (HCDR3) quality. As a result, the quality of germline assignments is significantly increased and spurious variable gene mutations are reduced. Scifer is automated and can process thousands of sequences in less than an hour. Its output provides quality control reports, FASTA files, summarized tables, and electropherograms for manual inspection. In summary, scifer is a user-friendly software that speeds up the analysis of immune receptor repertoire sequences, offering wide applicability.
桑格测序仍被广泛应用于各种实验中,通常与流式细胞仪结合使用,对特定细胞群进行索引。然而,现有软件缺乏对原始 Sanger 测序数据进行自动质量控制(QC)并将其与流式细胞仪信息大规模整合的能力。在这里,我们将介绍 scifer,这是一个 R 软件包,目前可在最新发布的 Bioconductor 3.20 中使用,通过对 B 细胞和 T 细胞受体序列的分析,我们展示了它在无缝整合这些类型数据方面的有效性。Scifer 对来自索引分类和免疫受体 Sanger 测序的原始数据进行预处理。它根据长度、Phred 分数和重链互补决定区 3 (HCDR3) 质量等选定参数识别高质量序列。因此,种系分配的质量大大提高,虚假的可变基因突变也减少了。Scifer 是自动化的,可在一小时内处理数千条序列。其输出结果包括质量控制报告、FASTA 文件、汇总表和供人工检查的电图。总之,scifer 是一款用户友好型软件,可加快免疫受体序列的分析速度,具有广泛的适用性。
{"title":"Scifer: An R/Bioconductor package for large-scale integration of Sanger sequencing and flow cytometry data of index-sorted single cells","authors":"Rodrigo Arcoverde Cerveira ,&nbsp;Klara Lenart ,&nbsp;Marcel Martin ,&nbsp;Matthew James Hinchcliff ,&nbsp;Fredrika Hellgren ,&nbsp;Kewei Ye ,&nbsp;Juliana Assis Geraldo ,&nbsp;Taras Kreslavsky ,&nbsp;Sebastian Ols ,&nbsp;Karin Loré","doi":"10.1016/j.immuno.2024.100046","DOIUrl":"10.1016/j.immuno.2024.100046","url":null,"abstract":"<div><div>Sanger sequencing remains widely used in various experimental contexts, often in combination with flow cytometry for indexing specific cell populations. However, existing software lacks the capability to automate quality control (QC) of raw Sanger sequencing data and integrate it with flow cytometry information on a large scale. Here, we introduce scifer, an R package now available in the latest release of Bioconductor (3.20) showcasing its effectiveness in seamlessly integrating these types of data as demonstrated by analyses of B cell and T cell receptor sequences. Scifer preprocesses raw data from index sorts and immune receptor Sanger sequencing. It identifies high-quality sequences based on selected parameters, such as length, Phred scores, and heavy-chain complementarity-determining region 3 (HCDR3) quality. As a result, the quality of germline assignments is significantly increased and spurious variable gene mutations are reduced. Scifer is automated and can process thousands of sequences in less than an hour. Its output provides quality control reports, FASTA files, summarized tables, and electropherograms for manual inspection. In summary, scifer is a user-friendly software that speeds up the analysis of immune receptor repertoire sequences, offering wide applicability.</div></div>","PeriodicalId":73343,"journal":{"name":"Immunoinformatics (Amsterdam, Netherlands)","volume":"16 ","pages":"Article 100046"},"PeriodicalIF":0.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lessons learned from the IMMREP23 TCR-epitope prediction challenge 从 IMMREP23 TCR 表位预测挑战中汲取的经验教训
Pub Date : 2024-09-28 DOI: 10.1016/j.immuno.2024.100045
Morten Nielsen , Anne Eugster , Mathias Fynbo Jensen , Manisha Goel , Andreas Tiffeau-Mayer , Aurelien Pelissier , Sebastiaan Valkiers , María Rodríguez Martínez , Barthélémy Meynard-Piganeeau , Victor Greiff , Thierry Mora , Aleksandra M. Walczak , Giancarlo Croce , Dana L Moreno , David Gfeller , Pieter Meysman , Justin Barton
Here, we present the findings from IMMREP23, the second benchmark competition focused on predicting the specificity of TCR-pMHC interactions.
The interaction of T cell receptors (TCR) towards their pMHC target is a cornerstone of the cellular immune system. Over the last decade, substantial progress has been made within the field of TCR specificity prediction, providing proof of concept for predicting TCR-pMHC interactions in a narrow space of “seen” pMHC targets where substantial training data is available. However, a significant challenge persists in extending the predictive capability to novel “unseen” pMHC targets. Furthermore, the performance of proposed methods is often challenged when evaluated outside the initial publication and data sets.
To address these issues, IMMREP23 challenge invited participants to predict, for a given test set of TCR-pMHC pairs, the likelihood that a pair would bind. A total of 53 teams participated, providing a total of 398 submissions.
The benchmark confirms that current methods achieve reasonable performance in the "seen" pMHC setting. However, most participating methods had close to random performance on the subset of “unseen” peptides, underlining that this prediction challenge remains essentially unsolved.
Finally, another key lesson from the benchmark is the critical issue of data leakage. Specifically, the data set construction procedure employed in IMMREP23 led to biases in the negative test data set. These biases were identified by several participating teams, and complicated the interpretation of the benchmark results. Based on these results, we put forward suggestions on how future competitions could avoid such data leakages and biases.
T 细胞受体(TCR)与其 pMHC 靶点的相互作用是细胞免疫系统的基石。在过去的十年中,TCR 特异性预测领域取得了长足的进步,证明了在有大量训练数据的情况下,在 "可见 "pMHC 靶点的狭窄空间内预测 TCR-pMHC 相互作用的概念。然而,将预测能力扩展到 "未见 "的新型 pMHC 靶点仍是一个重大挑战。为了解决这些问题,IMMREP23 挑战赛邀请参赛者针对给定的 TCR-pMHC 对测试集,预测一对 TCR-pMHC 对结合的可能性。共有 53 个团队参加,提交了 398 份报告。该基准证实,目前的方法在 "看到的 "pMHC 环境中取得了合理的性能。然而,大多数参与方法在 "未见 "肽子集上的性能接近随机,这突出表明这一预测难题基本上仍未解决。最后,基准测试的另一个关键教训是数据泄漏这一关键问题。具体来说,IMMREP23 采用的数据集构建程序导致负测试数据集出现偏差。一些参与团队发现了这些偏差,并使基准结果的解释变得复杂。基于这些结果,我们就未来的竞赛如何避免此类数据泄漏和偏差提出了建议。
{"title":"Lessons learned from the IMMREP23 TCR-epitope prediction challenge","authors":"Morten Nielsen ,&nbsp;Anne Eugster ,&nbsp;Mathias Fynbo Jensen ,&nbsp;Manisha Goel ,&nbsp;Andreas Tiffeau-Mayer ,&nbsp;Aurelien Pelissier ,&nbsp;Sebastiaan Valkiers ,&nbsp;María Rodríguez Martínez ,&nbsp;Barthélémy Meynard-Piganeeau ,&nbsp;Victor Greiff ,&nbsp;Thierry Mora ,&nbsp;Aleksandra M. Walczak ,&nbsp;Giancarlo Croce ,&nbsp;Dana L Moreno ,&nbsp;David Gfeller ,&nbsp;Pieter Meysman ,&nbsp;Justin Barton","doi":"10.1016/j.immuno.2024.100045","DOIUrl":"10.1016/j.immuno.2024.100045","url":null,"abstract":"<div><div>Here, we present the findings from IMMREP23, the second benchmark competition focused on predicting the specificity of TCR-pMHC interactions.</div><div>The interaction of T cell receptors (TCR) towards their pMHC target is a cornerstone of the cellular immune system. Over the last decade, substantial progress has been made within the field of TCR specificity prediction, providing proof of concept for predicting TCR-pMHC interactions in a narrow space of “seen” pMHC targets where substantial training data is available. However, a significant challenge persists in extending the predictive capability to novel “unseen” pMHC targets. Furthermore, the performance of proposed methods is often challenged when evaluated outside the initial publication and data sets.</div><div>To address these issues, IMMREP23 challenge invited participants to predict, for a given test set of TCR-pMHC pairs, the likelihood that a pair would bind. A total of 53 teams participated, providing a total of 398 submissions.</div><div>The benchmark confirms that current methods achieve reasonable performance in the \"seen\" pMHC setting. However, most participating methods had close to random performance on the subset of “unseen” peptides, underlining that this prediction challenge remains essentially unsolved.</div><div>Finally, another key lesson from the benchmark is the critical issue of data leakage. Specifically, the data set construction procedure employed in IMMREP23 led to biases in the negative test data set. These biases were identified by several participating teams, and complicated the interpretation of the benchmark results. Based on these results, we put forward suggestions on how future competitions could avoid such data leakages and biases.</div></div>","PeriodicalId":73343,"journal":{"name":"Immunoinformatics (Amsterdam, Netherlands)","volume":"16 ","pages":"Article 100045"},"PeriodicalIF":0.0,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multicohort analysis identifies conserved transcriptional interactions between humans and Plasmodium falciparum 多队列分析确定了人类与恶性疟原虫之间保守的转录相互作用
Pub Date : 2024-09-16 DOI: 10.1016/j.immuno.2024.100044
Bárbara Fernandes Silva , Nágila Isleide Silva , Pedro Felipe Loyola Souza , Tiago Paiva Guimarães , Luiz Gustavo Gardinassi

Malaria is caused by Plasmodium, a parasite that replicates inside and ruptures erythrocytes, causing an intense inflammatory response. Advances in high-throughput sequencing technologies have enabled the simultaneous study of the gene expression in humans and P. falciparum. However, the high-dimensional correlational networks generated in previous studies challenge the interpretation of the underlying biology, whereas associations found in one cohort might not replicate in independent samples due confounding factors affecting gene expression. We combined multicohort analysis of correlations with a hierarchical grouping approach to improve the discovery and interpretation of transcriptional associations between humans and P. falciparum. We analyzed nine public dual-transcriptomes acquired from whole blood of individuals infected with P. falciparum. Blood Transcription Modules (BTM) were used to reduce the dimension of host transcriptomes and Spearman's correlation analysis was used to identify host-parasite associations. Following, we performed meta-analysis of correlations with Stouffer's method and Bonferroni correction that resulted in a major transcriptional meta-network between humans and P. falciparum. We identified, for example, positive correlations between PAK1, NFKBIA, BIRC2, NLRC4, TLR4, RIPK2 expression and PF3D7_1205800, a putative P. falciparum high mobility group protein B3 (HMGB3). We also applied a leave-one-out strategy to prevent influence of confounding factors, resulting in highly conserved associations between host genes related to inflammation, immune cells, and glycerophospholipid metabolism with PF3D7_1223400, which encodes a putative phospholipid-transporting ATPase. Paired metabolomics and transcriptomics data revealed negative correlation between PF3D7_1223400 expression and the relative abundance of 1-linoleoyl-GPG. Collectively, our study provides data-driven hypotheses about molecular mechanisms of host-parasite interaction.

疟疾是由疟原虫引起的,这种寄生虫在红细胞内复制并破裂,引起强烈的炎症反应。高通量测序技术的进步使得人类和恶性疟原虫基因表达的同步研究成为可能。然而,以往研究中生成的高维相关网络对解释潜在的生物学问题提出了挑战,而在一个队列中发现的关联可能无法在独立样本中复制,因为影响基因表达的因素会造成混淆。我们将多队列相关性分析与分层分组方法相结合,以改进人类与恶性疟原虫之间转录关联的发现和解释。我们分析了从恶性疟原虫感染者全血中获取的九个公开双转录组。血液转录模块(BTM)被用来降低宿主转录组的维度,斯皮尔曼相关分析被用来识别宿主与寄生虫之间的关联。随后,我们用斯托弗方法和邦费罗尼校正法对相关性进行了元分析,结果发现了人类与恶性疟原虫之间的主要转录元网络。例如,我们发现 PAK1、NFKBIA、BIRC2、NLRC4、TLR4、RIPK2 的表达与 PF3D7_1205800(恶性疟原虫高迁移率基团蛋白 B3 (HMGB3))之间存在正相关。我们还采用了剔除策略以防止混杂因素的影响,结果发现与炎症、免疫细胞和甘油磷脂代谢相关的宿主基因与 PF3D7_1223400 之间存在高度保守的关联,PF3D7_1223400 编码一种推测的磷脂转运 ATP 酶。成对的代谢组学和转录组学数据显示,PF3D7_1223400 的表达与 1-linoleoyl-GPG 的相对丰度呈负相关。总之,我们的研究为宿主与寄生虫相互作用的分子机制提供了数据驱动的假设。
{"title":"Multicohort analysis identifies conserved transcriptional interactions between humans and Plasmodium falciparum","authors":"Bárbara Fernandes Silva ,&nbsp;Nágila Isleide Silva ,&nbsp;Pedro Felipe Loyola Souza ,&nbsp;Tiago Paiva Guimarães ,&nbsp;Luiz Gustavo Gardinassi","doi":"10.1016/j.immuno.2024.100044","DOIUrl":"10.1016/j.immuno.2024.100044","url":null,"abstract":"<div><p>Malaria is caused by <em>Plasmodium</em>, a parasite that replicates inside and ruptures erythrocytes, causing an intense inflammatory response. Advances in high-throughput sequencing technologies have enabled the simultaneous study of the gene expression in humans and <em>P. falciparum</em>. However, the high-dimensional correlational networks generated in previous studies challenge the interpretation of the underlying biology, whereas associations found in one cohort might not replicate in independent samples due confounding factors affecting gene expression. We combined multicohort analysis of correlations with a hierarchical grouping approach to improve the discovery and interpretation of transcriptional associations between humans and <em>P. falciparum</em>. We analyzed nine public dual-transcriptomes acquired from whole blood of individuals infected with <em>P. falciparum</em>. Blood Transcription Modules (BTM) were used to reduce the dimension of host transcriptomes and Spearman's correlation analysis was used to identify host-parasite associations. Following, we performed meta-analysis of correlations with Stouffer's method and Bonferroni correction that resulted in a major transcriptional meta-network between humans and <em>P. falciparum</em>. We identified, for example, positive correlations between <em>PAK1, NFKBIA, BIRC2, NLRC4, TLR4, RIPK2</em> expression and <em>PF3D7_1205800</em>, a putative <em>P. falciparum</em> high mobility group protein B3 (HMGB3). We also applied a leave-one-out strategy to prevent influence of confounding factors, resulting in highly conserved associations between host genes related to inflammation, immune cells, and glycerophospholipid metabolism with <em>PF3D7_1223400</em>, which encodes a putative phospholipid-transporting ATPase. Paired metabolomics and transcriptomics data revealed negative correlation between <em>PF3D7_1223400</em> expression and the relative abundance of 1-linoleoyl-GPG. Collectively, our study provides data-driven hypotheses about molecular mechanisms of host-parasite interaction.</p></div>","PeriodicalId":73343,"journal":{"name":"Immunoinformatics (Amsterdam, Netherlands)","volume":"16 ","pages":"Article 100044"},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667119024000144/pdfft?md5=0bb5fec5def6b5a092876014fea42924&pid=1-s2.0-S2667119024000144-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In silico modelling of CD8 T cell immune response links genetic regulation to population dynamics CD8 T 细胞免疫反应的硅学建模将遗传调控与种群动态联系起来
Pub Date : 2024-09-01 DOI: 10.1016/j.immuno.2024.100043
Thi Nhu Thao Nguyen , Madge Martin , Christophe Arpin , Samuel Bernard , Olivier Gandrillon , Fabien Crauste

The CD8 T cell immune response operates at multiple temporal and spatial scales, including all the early complex biochemical and biomechanical processes, up to long term cell population behavior.

In order to model this response, we devised a multiscale agent-based approach using Simuscale software. Within each agent (cell) of our model, we introduced a gene regulatory network (GRN) based upon a piecewise deterministic Markov process formalism. Cell fate – differentiation, proliferation, death – was coupled to the state of the GRN through rule-based mechanisms. Cells interact in a 3D computational domain and signal to each other via cell–cell contacts, influencing the GRN behavior.

Results show the ability of the model to correctly capture both population behavior and molecular time-dependent evolution. We examined the impact of several parameters on molecular and population dynamics, and demonstrated the add-on value of using a multiscale approach by showing the influence of molecular parameters, particularly protein degradation rates, on the outcome of the response, such as effector and memory cell counts.

CD8 T 细胞免疫反应在多个时间和空间尺度上运行,包括所有早期复杂的生物化学和生物力学过程,以及长期的细胞群行为。为了模拟这种反应,我们使用 Simuscale 软件设计了一种基于多尺度代理的方法。在模型的每个代理(细胞)中,我们都引入了基于片断确定性马尔可夫过程形式主义的基因调控网络(GRN)。细胞的命运--分化、增殖、死亡--通过基于规则的机制与基因调控网络的状态相耦合。结果表明,该模型能够正确捕捉群体行为和分子随时间变化的演化。我们研究了几个参数对分子和群体动力学的影响,并通过展示分子参数(尤其是蛋白质降解率)对效应细胞和记忆细胞数量等反应结果的影响,证明了使用多尺度方法的附加价值。
{"title":"In silico modelling of CD8 T cell immune response links genetic regulation to population dynamics","authors":"Thi Nhu Thao Nguyen ,&nbsp;Madge Martin ,&nbsp;Christophe Arpin ,&nbsp;Samuel Bernard ,&nbsp;Olivier Gandrillon ,&nbsp;Fabien Crauste","doi":"10.1016/j.immuno.2024.100043","DOIUrl":"10.1016/j.immuno.2024.100043","url":null,"abstract":"<div><p>The CD8 T cell immune response operates at multiple temporal and spatial scales, including all the early complex biochemical and biomechanical processes, up to long term cell population behavior.</p><p>In order to model this response, we devised a multiscale agent-based approach using <span>Simuscale</span> software. Within each agent (cell) of our model, we introduced a gene regulatory network (GRN) based upon a piecewise deterministic Markov process formalism. Cell fate – differentiation, proliferation, death – was coupled to the state of the GRN through rule-based mechanisms. Cells interact in a 3D computational domain and signal to each other via cell–cell contacts, influencing the GRN behavior.</p><p>Results show the ability of the model to correctly capture both population behavior and molecular time-dependent evolution. We examined the impact of several parameters on molecular and population dynamics, and demonstrated the add-on value of using a multiscale approach by showing the influence of molecular parameters, particularly protein degradation rates, on the outcome of the response, such as effector and memory cell counts.</p></div>","PeriodicalId":73343,"journal":{"name":"Immunoinformatics (Amsterdam, Netherlands)","volume":"15 ","pages":"Article 100043"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667119024000132/pdfft?md5=92c4f652893809c6f3e06131e312c290&pid=1-s2.0-S2667119024000132-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142173664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data mining antibody sequences for database searching in bottom-up proteomics 自下而上蛋白质组学数据库搜索抗体序列的数据挖掘
Pub Date : 2024-08-22 DOI: 10.1016/j.immuno.2024.100042
Xuan-Tung Trinh , Rebecca Freitag , Konrad Krawczyk , Veit Schwämmle

Mass spectrometry-based proteomics facilitates the identification and quantification of thousands of proteins but encounters challenges in measuring human antibodies due to their vast diversity. Bottom-up proteomics methods primarily rely on database searches, comparing experimental peptide values to theoretical database sequences. While the human body can produce millions of distinct antibodies, current databases, such as UniProtKB/Swiss-Prot, contain only 1095 sequences (as of January 2024), potentially hindering antibody identification via mass spectrometry. Therefore, expanding the database is crucial for discovering new antibodies. Recent genomic studies have amassed millions of human antibody sequences in the Observed Antibody Space (OAS) database, yet this data remains underutilized. Leveraging this vast collection, we conduct efficient database searches in publicly available proteomics data, focusing on SARS-CoV-2. In our study, thirty million heavy antibody sequences from 146 SARS-CoV-2 patients in the OAS database were digested in silico to obtain 18 million unique peptides. These peptides form the basis for new bottom-up proteomics databases. We used those databases for searching new antibody peptides in publicly available SARS-CoV-2 human plasma samples in the Proteomics Identification Database (PRIDE). This approach avoids false positives in antibody peptide identification as confirmed by searching against negative controls (brain samples) and employing different database sizes. We show that new antibody peptides were found in previous plasma samples and expect that the newly discovered antibody peptides can be further employed to develop therapeutic antibodies. The method will be broadly applicable to find characteristic antibodies for other diseases.

以质谱为基础的蛋白质组学有助于识别和量化成千上万的蛋白质,但由于人类抗体种类繁多,在测量人类抗体时遇到了挑战。自下而上的蛋白质组学方法主要依靠数据库搜索,将实验肽值与理论数据库序列进行比较。虽然人体可以产生数百万种不同的抗体,但目前的数据库(如 UniProtKB/Swiss-Prot)只包含 1095 个序列(截至 2024 年 1 月),可能会妨碍通过质谱鉴定抗体。因此,扩大数据库对发现新抗体至关重要。最近的基因组研究在观察抗体空间(OAS)数据库中积累了数百万个人类抗体序列,但这些数据仍未得到充分利用。利用这个庞大的数据库,我们在公开的蛋白质组学数据中进行了高效的数据库搜索,重点是 SARS-CoV-2 。在我们的研究中,我们对 OAS 数据库中来自 146 名 SARS-CoV-2 患者的 3,000 万个重抗体序列进行了硅消化,获得了 1,800 万个独特的肽段。这些肽构成了新的自下而上蛋白质组学数据库的基础。我们利用这些数据库在蛋白质组学鉴定数据库(PRIDE)中公开的 SARS-CoV-2 人类血浆样本中搜索新的抗体肽。通过与阴性对照(脑样本)进行搜索和使用不同大小的数据库,这种方法避免了抗体肽鉴定中的假阳性。我们发现在以前的血浆样本中发现了新的抗体肽,并期望新发现的抗体肽能进一步用于开发治疗性抗体。该方法将广泛应用于寻找其他疾病的特征抗体。
{"title":"Data mining antibody sequences for database searching in bottom-up proteomics","authors":"Xuan-Tung Trinh ,&nbsp;Rebecca Freitag ,&nbsp;Konrad Krawczyk ,&nbsp;Veit Schwämmle","doi":"10.1016/j.immuno.2024.100042","DOIUrl":"10.1016/j.immuno.2024.100042","url":null,"abstract":"<div><p>Mass spectrometry-based proteomics facilitates the identification and quantification of thousands of proteins but encounters challenges in measuring human antibodies due to their vast diversity. Bottom-up proteomics methods primarily rely on database searches, comparing experimental peptide values to theoretical database sequences. While the human body can produce millions of distinct antibodies, current databases, such as UniProtKB/Swiss-Prot, contain only 1095 sequences (as of January 2024), potentially hindering antibody identification via mass spectrometry. Therefore, expanding the database is crucial for discovering new antibodies. Recent genomic studies have amassed millions of human antibody sequences in the Observed Antibody Space (OAS) database, yet this data remains underutilized. Leveraging this vast collection, we conduct efficient database searches in publicly available proteomics data, focusing on SARS-CoV-2. In our study, thirty million heavy antibody sequences from 146 SARS-CoV-2 patients in the OAS database were digested <em>in silico</em> to obtain 18 million unique peptides. These peptides form the basis for new bottom-up proteomics databases. We used those databases for searching new antibody peptides in publicly available SARS-CoV-2 human plasma samples in the Proteomics Identification Database (PRIDE). This approach avoids false positives in antibody peptide identification as confirmed by searching against negative controls (brain samples) and employing different database sizes. We show that new antibody peptides were found in previous plasma samples and expect that the newly discovered antibody peptides can be further employed to develop therapeutic antibodies. The method will be broadly applicable to find characteristic antibodies for other diseases.</p></div>","PeriodicalId":73343,"journal":{"name":"Immunoinformatics (Amsterdam, Netherlands)","volume":"15 ","pages":"Article 100042"},"PeriodicalIF":0.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667119024000120/pdfft?md5=6bc5ac01ada92397791db50d32ef768f&pid=1-s2.0-S2667119024000120-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142076922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Navigating the immunosuppressive brain tumor microenvironment using spatial biology 利用空间生物学为免疫抑制性脑肿瘤微环境导航
Pub Date : 2024-08-13 DOI: 10.1016/j.immuno.2024.100041
Samuel S. Widodo , Marija Dinevska , Stanley S. Stylli , Adriano L. Martinelli , Marianna Rapsomaniki , Theo Mantamadiotis

With the application of spatial biology, the detection and identification of the diverse cell types present in the tumor microenvironment, including specific immune subsets, is possible at single cell resolution. Since spatial biology analysis of tumor tissue allows multiple biological parameters to be measured, including cell type, cell number, cell state, as well as the precise location and the spatial relationship of every cell to other cells and histopathological hallmarks, a vast amount of data is generated. The power of this is realized when correlating the spatial biology data with clinical data for each patient, from which the tissue was collected during biopsy or surgery, conducted as part of the patient's diagnosis and treatment. Aside from the enormous leap in chemistry and molecular biology technology required to develop the analytical tools for spatial biology, collection, analysis of cells in the tumor microenvironment has been possible only with the development of computational tools capable of deciphering tumor tissue complexity to predict tumor evolution and response to treatment and the role of immune cells in regulating tumor biology. Here we describe how spatial biology analysis, combined with computational analysis have been used to deconstruct the complexity of the brain tumor microenvironment and shed light on why brain tumors exhibit extreme immunosuppression. We also discuss how the understanding gained using spatial biology has shed light on how tumor immunosuppression can be overcome.

应用空间生物学技术,可以以单细胞分辨率检测和识别肿瘤微环境中存在的各种细胞类型,包括特定的免疫亚群。由于对肿瘤组织的空间生物学分析可测量多种生物参数,包括细胞类型、细胞数量、细胞状态,以及每个细胞的精确位置及其与其他细胞和组织病理学特征的空间关系,因此可生成大量数据。将空间生物学数据与每位患者的临床数据(组织是在活组织检查或手术中采集的,作为患者诊断和治疗的一部分)关联起来,就能发现这些数据的威力。除了开发空间生物学分析工具所需的化学和分子生物学技术的巨大飞跃之外,只有开发出能够破译肿瘤组织复杂性的计算工具,才能对肿瘤微环境中的细胞进行收集和分析,从而预测肿瘤的演变、对治疗的反应以及免疫细胞在调节肿瘤生物学中的作用。在这里,我们将介绍如何利用空间生物学分析结合计算分析来解构脑肿瘤微环境的复杂性,并揭示脑肿瘤表现出极端免疫抑制的原因。我们还讨论了如何利用空间生物学获得的理解来阐明如何克服肿瘤免疫抑制。
{"title":"Navigating the immunosuppressive brain tumor microenvironment using spatial biology","authors":"Samuel S. Widodo ,&nbsp;Marija Dinevska ,&nbsp;Stanley S. Stylli ,&nbsp;Adriano L. Martinelli ,&nbsp;Marianna Rapsomaniki ,&nbsp;Theo Mantamadiotis","doi":"10.1016/j.immuno.2024.100041","DOIUrl":"10.1016/j.immuno.2024.100041","url":null,"abstract":"<div><p>With the application of spatial biology, the detection and identification of the diverse cell types present in the tumor microenvironment, including specific immune subsets, is possible at single cell resolution. Since spatial biology analysis of tumor tissue allows multiple biological parameters to be measured, including cell type, cell number, cell state, as well as the precise location and the spatial relationship of every cell to other cells and histopathological hallmarks, a vast amount of data is generated. The power of this is realized when correlating the spatial biology data with clinical data for each patient, from which the tissue was collected during biopsy or surgery, conducted as part of the patient's diagnosis and treatment. Aside from the enormous leap in chemistry and molecular biology technology required to develop the analytical tools for spatial biology, collection, analysis of cells in the tumor microenvironment has been possible only with the development of computational tools capable of deciphering tumor tissue complexity to predict tumor evolution and response to treatment and the role of immune cells in regulating tumor biology. Here we describe how spatial biology analysis, combined with computational analysis have been used to deconstruct the complexity of the brain tumor microenvironment and shed light on why brain tumors exhibit extreme immunosuppression. We also discuss how the understanding gained using spatial biology has shed light on how tumor immunosuppression can be overcome.</p></div>","PeriodicalId":73343,"journal":{"name":"Immunoinformatics (Amsterdam, Netherlands)","volume":"15 ","pages":"Article 100041"},"PeriodicalIF":0.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667119024000119/pdfft?md5=04d68aa94c0735faff67ea6c15c37656&pid=1-s2.0-S2667119024000119-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141997366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
T-cell receptor binding prediction: A machine learning revolution T 细胞受体结合预测:机器学习革命
Pub Date : 2024-07-22 DOI: 10.1016/j.immuno.2024.100040
Anna Weber , Aurélien Pélissier , María Rodríguez Martínez

Recent advancements in immune sequencing and experimental techniques are generating extensive T cell receptor (TCR) repertoire data, enabling the development of models to predict TCR binding specificity. Despite the computational challenges posed by the vast diversity of TCRs and epitopes, significant progress has been made. This review explores the evolution of computational models designed for this task, emphasizing machine learning efforts, including early unsupervised clustering approaches, supervised models, and recent applications of Protein Language Models (PLMs), deep learning models pretrained on extensive collections of unlabeled protein sequences that capture crucial biological properties.

We survey the most prominent models in each category and offer a critical discussion on recurrent challenges, including the lack of generalization to new epitopes, dataset biases, and shortcomings in model validation designs. Focusing on PLMs, we discuss the transformative impact of Transformer-based protein models in bioinformatics, particularly in TCR specificity analysis. We discuss recent studies that exploit PLMs to deliver notably competitive performances in TCR-related tasks, while also examining current limitations and future directions. Lastly, we address the pressing need for improved interpretability in these often opaque models, and examine current efforts to extract biological insights from large black box models.

免疫测序和实验技术的最新进展正在产生大量的 T 细胞受体(TCR)谱系数据,从而能够开发出预测 TCR 结合特异性的模型。尽管 TCR 和表位的多样性给计算带来了挑战,但我们还是取得了重大进展。这篇综述探讨了为这一任务设计的计算模型的演变,强调了机器学习的努力,包括早期的无监督聚类方法、有监督模型和蛋白质语言模型(PLM)的最新应用,PLM是在大量未标记的蛋白质序列集合上预先训练的深度学习模型,能捕捉关键的生物学特性。我们调查了每个类别中最突出的模型,并对反复出现的挑战进行了批判性讨论,包括缺乏对新表位的泛化、数据集偏差和模型验证设计的缺陷。以 PLM 为重点,我们讨论了基于 Transformer 的蛋白质模型在生物信息学中的变革性影响,尤其是在 TCR 特异性分析中。我们讨论了近期利用 PLM 在 TCR 相关任务中取得显著竞争力的研究,同时还探讨了当前的局限性和未来的发展方向。最后,我们探讨了提高这些通常不透明的模型可解释性的迫切需要,并考察了目前从大型黑盒模型中提取生物学见解的努力。
{"title":"T-cell receptor binding prediction: A machine learning revolution","authors":"Anna Weber ,&nbsp;Aurélien Pélissier ,&nbsp;María Rodríguez Martínez","doi":"10.1016/j.immuno.2024.100040","DOIUrl":"10.1016/j.immuno.2024.100040","url":null,"abstract":"<div><p>Recent advancements in immune sequencing and experimental techniques are generating extensive T cell receptor (TCR) repertoire data, enabling the development of models to predict TCR binding specificity. Despite the computational challenges posed by the vast diversity of TCRs and epitopes, significant progress has been made. This review explores the evolution of computational models designed for this task, emphasizing machine learning efforts, including early unsupervised clustering approaches, supervised models, and recent applications of Protein Language Models (PLMs), deep learning models pretrained on extensive collections of unlabeled protein sequences that capture crucial biological properties.</p><p>We survey the most prominent models in each category and offer a critical discussion on recurrent challenges, including the lack of generalization to new epitopes, dataset biases, and shortcomings in model validation designs. Focusing on PLMs, we discuss the transformative impact of Transformer-based protein models in bioinformatics, particularly in TCR specificity analysis. We discuss recent studies that exploit PLMs to deliver notably competitive performances in TCR-related tasks, while also examining current limitations and future directions. Lastly, we address the pressing need for improved interpretability in these often opaque models, and examine current efforts to extract biological insights from large black box models.</p></div>","PeriodicalId":73343,"journal":{"name":"Immunoinformatics (Amsterdam, Netherlands)","volume":"15 ","pages":"Article 100040"},"PeriodicalIF":0.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667119024000107/pdfft?md5=d53078634a01ebcc5850282ff7db1fa1&pid=1-s2.0-S2667119024000107-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141961980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Immunoinformatics (Amsterdam, Netherlands)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1