Experimental and numerical investigations of extreme wave impacting on a suspended structure

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL Coastal Engineering Pub Date : 2024-07-31 DOI:10.1016/j.coastaleng.2024.104592
Di Mu , Dezhi Ning , Lifen Chen
{"title":"Experimental and numerical investigations of extreme wave impacting on a suspended structure","authors":"Di Mu ,&nbsp;Dezhi Ning ,&nbsp;Lifen Chen","doi":"10.1016/j.coastaleng.2024.104592","DOIUrl":null,"url":null,"abstract":"<div><p>Nonlinear interactions between an extreme wave and a cylindrical structure with its bottom being elevated above the still mean water level are investigated by a set of physical experiments, complemented by advanced CFD-type numerical simulations. The extreme wave is modelled as a solitary wave, which is widely applied as a simple model for tsunamis. Three horizontal (namely forward impacting, backward impacting and cyclic forces) and three vertical (namely uplifting, suction, and slamming forces) force modes are identified. The forward impacting force results from the wave crest impacting on the cylinder front face directly, and its force peak is found to have a quadratic relationship with the velocity of incoming water particle. The slamming force is however caused by the wave hitting on the cylinder bottom from beneath, and other modes are associated with the complex fluid behaviors around the cylinder, e.g. reverse flow and violent surface transformation. In addition, the effects of cylinder clearance (the vertical distance between the cylinder bottom and the mean water level), and the inclined angle are investigated in-depth. It is found that these two play significant roles in the slamming force mode. The former determines the total water momentum that is transferable, and the latter tells how much of this total transferable water momentum could effectively be transferred to the slamming force eventually. A planar collision occurs when the inclined angle is equal or close to the localized slope angle of the undisturbed wave surface, resulting in the largest momentum transfer, and in turn, the largest slamming force for a given cylinder clearance.</p></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"193 ","pages":"Article 104592"},"PeriodicalIF":4.2000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383924001406","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Nonlinear interactions between an extreme wave and a cylindrical structure with its bottom being elevated above the still mean water level are investigated by a set of physical experiments, complemented by advanced CFD-type numerical simulations. The extreme wave is modelled as a solitary wave, which is widely applied as a simple model for tsunamis. Three horizontal (namely forward impacting, backward impacting and cyclic forces) and three vertical (namely uplifting, suction, and slamming forces) force modes are identified. The forward impacting force results from the wave crest impacting on the cylinder front face directly, and its force peak is found to have a quadratic relationship with the velocity of incoming water particle. The slamming force is however caused by the wave hitting on the cylinder bottom from beneath, and other modes are associated with the complex fluid behaviors around the cylinder, e.g. reverse flow and violent surface transformation. In addition, the effects of cylinder clearance (the vertical distance between the cylinder bottom and the mean water level), and the inclined angle are investigated in-depth. It is found that these two play significant roles in the slamming force mode. The former determines the total water momentum that is transferable, and the latter tells how much of this total transferable water momentum could effectively be transferred to the slamming force eventually. A planar collision occurs when the inclined angle is equal or close to the localized slope angle of the undisturbed wave surface, resulting in the largest momentum transfer, and in turn, the largest slamming force for a given cylinder clearance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
极端波浪冲击悬挂结构的实验和数值研究
通过一系列物理实验,并辅以先进的 CFD 型数值模拟,研究了极值波与底部高于静止平均水位的圆柱形结构之间的非线性相互作用。极值波被模拟为孤波,孤波作为海啸的简单模型被广泛应用。确定了三种水平力模式(即前向冲击力、后向冲击力和周期力)和三种垂直力模式(即上浮力、吸力和撞击力)。前向冲击力是由波峰直接冲击圆筒前端面产生的,其力峰与进入的水粒子速度呈二次关系。其他模式则与圆筒周围复杂的流体行为有关,如反向流动和剧烈的表面变化。此外,还深入研究了圆筒间隙(圆筒底部与平均水位之间的垂直距离)和倾斜角的影响。研究发现,这两者在撞击力模式中起着重要作用。前者决定了可传递的总水流动量,而后者则告诉人们这些可传递的总水流动量中有多少能最终有效地传递给撞击力。当倾斜角等于或接近未扰动波面的局部倾斜角时,就会发生平面碰撞,从而产生最大的动量转移,进而在给定的圆筒间隙内产生最大的坍塌力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Coastal Engineering
Coastal Engineering 工程技术-工程:大洋
CiteScore
9.20
自引率
13.60%
发文量
0
审稿时长
3.5 months
期刊介绍: Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.
期刊最新文献
A comparison of linear and nonlinear 3D semi-Lagrangian motion of moored Waverider and Spotter wave buoys Experimental study on tsunami-driven debris damming loads on columns of an elevated coastal structure A probabilistic coral rubble mechanical instability model applied with field observations from the Great Barrier reef Numerical modelling of pump-driven tsunami generation and fluid-structure-interaction in idealized urbanized coastal areas during run-up Energy balance during Bragg wave resonance by submerged porous breakwaters through a mixture theory-based δ-LES-SPH model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1