An experimental investigation of various trickle collector structures to enhance solar water heater efficiency

IF 5.3 Q2 ENGINEERING, ENVIRONMENTAL Cleaner Engineering and Technology Pub Date : 2024-08-01 DOI:10.1016/j.clet.2024.100789
Nugroho Agung Pambudi , Iksan Riva Nanda , Alisya Eka Putri , Robby Nur Salsala , Muhammad Aziz , Bayu Rudiyanto , Apri Wiyono
{"title":"An experimental investigation of various trickle collector structures to enhance solar water heater efficiency","authors":"Nugroho Agung Pambudi ,&nbsp;Iksan Riva Nanda ,&nbsp;Alisya Eka Putri ,&nbsp;Robby Nur Salsala ,&nbsp;Muhammad Aziz ,&nbsp;Bayu Rudiyanto ,&nbsp;Apri Wiyono","doi":"10.1016/j.clet.2024.100789","DOIUrl":null,"url":null,"abstract":"<div><p>This study aimed to enhance the efficiency of the solar water heater (SWH) due to the increasing demand of renewable energy. It compared use three different solar collector models, namely Model A (square-shaped polycarbonate), Model B (v-corrugated zinc), and Model C (trapezoidal aluminium) to identify the most cost-effective configuration. The models were subjected to experiments in real operating conditions during the summer season in Indonesia. Various parameters, including solar radiation intensity, wind speed, inlet and outlet temperatures, and flow rate, were measured every 10 min from morning to afternoon. Additionally, the study employed a trickle and one-way flow rate system. The results showed that Model B achieved the highest total efficiency at 50%, followed by Models A and C at 47% and 34%, respectively. The 120 Lph flow rate exhibited better performance in absorbing useful heat energy than the 240 Lph flow rate. Based on these findings, all three models were recommended for the household-scale SWH applications. Model A showed the most promising economic value but had a shorter lifespan due to the tendency of polycarbonate to deform. In contrast, Model B and Model C, using zinc and aluminium, offered longer lifespans.</p></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"21 ","pages":"Article 100789"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666790824000697/pdfft?md5=ef39115ff0ee0e57163f25075fbb0444&pid=1-s2.0-S2666790824000697-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666790824000697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to enhance the efficiency of the solar water heater (SWH) due to the increasing demand of renewable energy. It compared use three different solar collector models, namely Model A (square-shaped polycarbonate), Model B (v-corrugated zinc), and Model C (trapezoidal aluminium) to identify the most cost-effective configuration. The models were subjected to experiments in real operating conditions during the summer season in Indonesia. Various parameters, including solar radiation intensity, wind speed, inlet and outlet temperatures, and flow rate, were measured every 10 min from morning to afternoon. Additionally, the study employed a trickle and one-way flow rate system. The results showed that Model B achieved the highest total efficiency at 50%, followed by Models A and C at 47% and 34%, respectively. The 120 Lph flow rate exhibited better performance in absorbing useful heat energy than the 240 Lph flow rate. Based on these findings, all three models were recommended for the household-scale SWH applications. Model A showed the most promising economic value but had a shorter lifespan due to the tendency of polycarbonate to deform. In contrast, Model B and Model C, using zinc and aluminium, offered longer lifespans.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高太阳能热水器效率的各种涓流集热器结构的实验研究
由于对可再生能源的需求日益增长,本研究旨在提高太阳能热水器(SWH)的效率。研究比较了三种不同的太阳能集热器模型,即模型 A(方形聚碳酸酯)、模型 B(V 形波纹锌)和模型 C(梯形铝),以确定最具成本效益的配置。这些模型在印度尼西亚夏季的实际运行条件下进行了实验。从上午到下午,每隔 10 分钟测量一次各种参数,包括太阳辐射强度、风速、入口和出口温度以及流速。此外,研究还采用了涓流和单向流速系统。结果显示,B 型的总效率最高,达到 50%,其次是 A 型和 C 型,分别为 47% 和 34%。在吸收有用热能方面,120 升/小时的流量比 240 升/小时的流量表现得更好。基于这些研究结果,建议将所有三种模式用于家庭规模的 SWH 应用。模型 A 显示出最有前景的经济价值,但由于聚碳酸酯容易变形,其使用寿命较短。相比之下,使用锌和铝的 B 型和 C 型使用寿命较长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cleaner Engineering and Technology
Cleaner Engineering and Technology Engineering-Engineering (miscellaneous)
CiteScore
9.80
自引率
0.00%
发文量
218
审稿时长
21 weeks
期刊最新文献
Guidelines for implementing cleaner production strategies in a natural rubber gloves manufacturing industry How does the use of cryptocurrency affect circular economy practices in Iranian manufacturing companies? Optimization of alkali-activated ladle slag-fly ash composites using a Taguchi-TOPSIS hybrid algorithm The effects of joint process parameters of two-step manufacturing processes on the mechanical performance of biocomposites using Taguchi and multiple regression techniques A tiered NARX model for forecasting day-ahead energy production in distributed solar PV systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1