A heat pump-driven mechanical vapor compression desalination system and its operating characteristics

IF 4.5 3区 工程技术 Q1 WATER RESOURCES Water Resources and Industry Pub Date : 2024-08-03 DOI:10.1016/j.wri.2024.100264
Han Yang , Chunxin Yang , Leiming Geng
{"title":"A heat pump-driven mechanical vapor compression desalination system and its operating characteristics","authors":"Han Yang ,&nbsp;Chunxin Yang ,&nbsp;Leiming Geng","doi":"10.1016/j.wri.2024.100264","DOIUrl":null,"url":null,"abstract":"<div><p>The converter valve of ultra-high-voltage direct current grid requires a large amount of cooling water for heat dissipation. Considering the generated waste heat, this study proposes a heat pump-driven mechanical vapor compression (HP-MVC) desalination system based on traditional power-driven mechanical vapor compression (MVC). Using the scaling-endoreversible thermodynamic model, the analytical solutions of the structural equation and operating boundary of the proposed HP-MVC system were derived, which is the innovation of this study. The effects of different component parameters on the thermodynamic characteristics and operation boundaries of the HP-MVC were determined. The results revealed that the HP-MVC system alternately exhibited heat-drive dominant and power-drive dominant modes, in which the specific power consumption was lower in the former. When the recovery ratio was 0.3, with an increase in the pressure ratio from 1.15 to 1.50, the heat supplemented by the heat pump decreased by 31.9 %, and the specific power consumption increased by 63.1 %. The analytical solutions of the structural equation provide a theoretical basis for the efficient operation of the system, and the operation boundaries demonstrate the difference between HP-MVC and traditional MVC. The HP-MVC reduces heat dissipation requirements and results in a more energy-efficient desalination system, which is a typical mutually beneficial design and worth promoting.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":"32 ","pages":"Article 100264"},"PeriodicalIF":4.5000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221237172400026X/pdfft?md5=2e52db2e20d20e4ca56cad75544dca87&pid=1-s2.0-S221237172400026X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources and Industry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221237172400026X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

The converter valve of ultra-high-voltage direct current grid requires a large amount of cooling water for heat dissipation. Considering the generated waste heat, this study proposes a heat pump-driven mechanical vapor compression (HP-MVC) desalination system based on traditional power-driven mechanical vapor compression (MVC). Using the scaling-endoreversible thermodynamic model, the analytical solutions of the structural equation and operating boundary of the proposed HP-MVC system were derived, which is the innovation of this study. The effects of different component parameters on the thermodynamic characteristics and operation boundaries of the HP-MVC were determined. The results revealed that the HP-MVC system alternately exhibited heat-drive dominant and power-drive dominant modes, in which the specific power consumption was lower in the former. When the recovery ratio was 0.3, with an increase in the pressure ratio from 1.15 to 1.50, the heat supplemented by the heat pump decreased by 31.9 %, and the specific power consumption increased by 63.1 %. The analytical solutions of the structural equation provide a theoretical basis for the efficient operation of the system, and the operation boundaries demonstrate the difference between HP-MVC and traditional MVC. The HP-MVC reduces heat dissipation requirements and results in a more energy-efficient desalination system, which is a typical mutually beneficial design and worth promoting.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热泵驱动的机械蒸汽压缩海水淡化系统及其运行特性
特高压直流电网的换流阀需要大量冷却水进行散热。考虑到产生的余热,本研究在传统电力驱动机械蒸汽压缩(MVC)的基础上,提出了一种热泵驱动机械蒸汽压缩(HP-MVC)海水淡化系统。利用比例-内可逆热力学模型,推导出了拟议的 HP-MVC 系统的结构方程和运行边界的解析解,这是本研究的创新之处。研究确定了不同组件参数对 HP-MVC 热力学特性和运行边界的影响。结果表明,HP-MVC 系统交替表现出热驱动主导模式和功率驱动主导模式,其中前者的比功耗较低。当回收比为 0.3 时,压力比从 1.15 增加到 1.50,热泵补充的热量减少了 31.9%,比功耗增加了 63.1%。结构方程的分析解为系统的高效运行提供了理论依据,而运行边界则证明了 HP-MVC 与传统 MVC 的区别。HP-MVC 降低了散热要求,使海水淡化系统更加节能,是一种典型的互利设计,值得推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Resources and Industry
Water Resources and Industry Social Sciences-Geography, Planning and Development
CiteScore
8.10
自引率
5.90%
发文量
23
审稿时长
75 days
期刊介绍: Water Resources and Industry moves research to innovation by focusing on the role industry plays in the exploitation, management and treatment of water resources. Different industries use radically different water resources in their production processes, while they produce, treat and dispose a wide variety of wastewater qualities. Depending on the geographical location of the facilities, the impact on the local resources will vary, pre-empting the applicability of one single approach. The aims and scope of the journal include: -Industrial water footprint assessment - an evaluation of tools and methodologies -What constitutes good corporate governance and policy and how to evaluate water-related risk -What constitutes good stakeholder collaboration and engagement -New technologies enabling companies to better manage water resources -Integration of water and energy and of water treatment and production processes in industry
期刊最新文献
Analysis of the effectiveness of organic compounds from the amine group in precipitating ions from soda production wastewater Sustainable water treatment: Harnessing mining waste as catalysts for Sicomet green degradation Industrial water consumption index: A new bridge between water consumption and socioeconomic development Preparation of a rubber nanocomposite for oil/water separation using surface functionalized/silanized carbon black nanoparticles Application of selected indicators to assess contamination of municipal landfill leachate and its impact on groundwater
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1