Near-equilibrium analysis of CO2 partial pressure on carbonate hydrogenation in an integrated carbon capture and utilization scheme

{"title":"Near-equilibrium analysis of CO2 partial pressure on carbonate hydrogenation in an integrated carbon capture and utilization scheme","authors":"","doi":"10.1016/j.ccst.2024.100261","DOIUrl":null,"url":null,"abstract":"<div><p>The integrated carbon capture and utilization (ICCU) technology, combined with the reverse water-gas shift reaction (RWGS), is considered a promising strategy for mitigating carbon emissions. This study investigates the limestone calcination and hydrogenation processes under relatively high partial pressures of CO<sub>2</sub> in near-equilibrium conditions, at partial pressures (<em>P</em>) close to the equilibrium pressure (<em>P</em><sub>eq</sub>), relevant to the ICCU-RWGS process, particularly during the in-situ CO<sub>2</sub> conversion stage. The decomposition of CaCO<sub>3</sub> during conventional calcination and hydrogenation under near-equilibrium conditions was initially examined using micro-fluidized bed thermogravimetric analysis coupled with mass spectrometry (MFB-TGA-MS) and a particle-injecting method. The results indicated that limestone decomposition during conventional calcination was inhibited under near-equilibrium conditions, with conversion near 0%. However, during the hydrogenation process, the interaction between H<sub>2</sub> and CaCO<sub>3</sub> further activated the decomposition of limestone. At 750 °C and <em>P</em>/<em>P</em><sub>eq</sub>=0.9, limestone particles took ∼100 s to achieve complete conversion (100%). Given the known self-catalytic activity of CaO in converting carbonate to CO during hydrogenation, a dual-layer limestone hydrogenation process was further conducted using a fixed bed reactor. At 850 °C and a 30 vol.% H<sub>2</sub> atmosphere, the limestone decomposition rate increased significantly and subsequently reacted with H<sub>2</sub> to form CO, resulting in an H<sub>2</sub>/CO ratio of approximately 2.5. These findings support the viability of ICCU-RWGS approaches for future commercialization, with the product gas serving as the feedstock for the Fischer–Tropsch Synthesis (FTS) process.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824000733/pdfft?md5=cfa31b4292d0f394d505f918610e9036&pid=1-s2.0-S2772656824000733-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824000733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The integrated carbon capture and utilization (ICCU) technology, combined with the reverse water-gas shift reaction (RWGS), is considered a promising strategy for mitigating carbon emissions. This study investigates the limestone calcination and hydrogenation processes under relatively high partial pressures of CO2 in near-equilibrium conditions, at partial pressures (P) close to the equilibrium pressure (Peq), relevant to the ICCU-RWGS process, particularly during the in-situ CO2 conversion stage. The decomposition of CaCO3 during conventional calcination and hydrogenation under near-equilibrium conditions was initially examined using micro-fluidized bed thermogravimetric analysis coupled with mass spectrometry (MFB-TGA-MS) and a particle-injecting method. The results indicated that limestone decomposition during conventional calcination was inhibited under near-equilibrium conditions, with conversion near 0%. However, during the hydrogenation process, the interaction between H2 and CaCO3 further activated the decomposition of limestone. At 750 °C and P/Peq=0.9, limestone particles took ∼100 s to achieve complete conversion (100%). Given the known self-catalytic activity of CaO in converting carbonate to CO during hydrogenation, a dual-layer limestone hydrogenation process was further conducted using a fixed bed reactor. At 850 °C and a 30 vol.% H2 atmosphere, the limestone decomposition rate increased significantly and subsequently reacted with H2 to form CO, resulting in an H2/CO ratio of approximately 2.5. These findings support the viability of ICCU-RWGS approaches for future commercialization, with the product gas serving as the feedstock for the Fischer–Tropsch Synthesis (FTS) process.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二氧化碳分压对碳捕获和利用综合方案中碳酸盐加氢的近平衡分析
综合碳捕集与利用(ICCU)技术与反向水气变换反应(RWGS)相结合,被认为是一种很有前途的减少碳排放的策略。本研究对石灰石煅烧和氢化过程进行了研究,在接近平衡条件下,在接近平衡压力(Peq)的分压(P)下,特别是在二氧化碳原位转化阶段,石灰石煅烧和氢化过程与 ICCU-RWGS 过程相关。利用微流化床热重分析与质谱联用技术(MFB-TGA-MS)和颗粒注入法对近平衡条件下传统煅烧和加氢过程中 CaCO3 的分解进行了初步研究。结果表明,在接近平衡的条件下,石灰石在传统煅烧过程中的分解受到抑制,转化率接近 0%。然而,在氢化过程中,H2 和 CaCO3 之间的相互作用进一步激活了石灰石的分解。在 750 °C 和 P/Peq=0.9 的条件下,石灰石颗粒需要 100 秒才能实现完全转化(100%)。鉴于已知 CaO 在氢化过程中将碳酸盐转化为 CO 的自催化活性,我们使用固定床反应器进一步进行了双层石灰石氢化过程。在 850 °C 和 30 Vol.% H2 的气氛下,石灰石的分解率显著增加,随后与 H2 反应生成 CO,从而使 H2/CO 比率达到约 2.5。这些发现证明了 ICCU-RWGS 方法在未来商业化的可行性,其产品气体可作为费托合成(FTS)工艺的原料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Breakthroughs in CH4 capture technologies: Key to reducing fugitive methane emissions in the energy sector Thermal characterization and moisture adsorption performance of calcium alginate hydrogel/silica gel/polyvinylpyrrolidone/expanded graphite composite desiccant Towards planetary boundary sustainability of food processing wastewater, by resource recovery & emission reduction: A process system engineering perspective Assessment of the volatility of amine degradation compounds in aqueous MEA and blend of 1-(2HE)PRLD and 3A1P Exploiting process thermodynamics in carbon capture from direct air to industrial sources: The paradigmatic case of ionic liquids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1