Porous hollow Ni/CaO dual functional materials for integrated CO2 capture and methanation

{"title":"Porous hollow Ni/CaO dual functional materials for integrated CO2 capture and methanation","authors":"","doi":"10.1016/j.ccst.2024.100259","DOIUrl":null,"url":null,"abstract":"<div><p>Excessive CO<sub>2</sub> emissions present significant environmental and energy challenges, driving the need for effective strategies to reduce CO<sub>2</sub>. Integrated CO<sub>2</sub> capture and utilization (ICCU) processes have drawn considerable attention by combing carbon capture and catalytic conversion in a unified process. The rational design of efficient dual-functional materials (DFMs) is key to achieving high-efficiency ICCU processes. Here, we synthesized a series of CaO-based DFMs with varying Ni loadings, in which the porous hollow CaO prepared by a sacrificial template method was employed as the adsorbent. The porous hollow structure are effectively to improve the diffusion of CO<sub>2</sub> species and provide sufficient space for volume expansion after CO<sub>2</sub> capture. The optimized conditions for adsorption and catalytic sites were determined to be at 550 °C with 5wt% Ni loading. Under these conditions, the adsorption capacity of 5 %Ni/CaO-P reached 7.02 mmol·<em>g</em><sup>−1</sup> <sub>DFM</sub>, with a CH<sub>4</sub> yield of 2.85 mmol·<em>g</em><sup>−1</sup> <sub>DFM</sub> and a CH<sub>4</sub> selectivity of 94.09 %. After 19 cycles, the adsorption capacity of 5 %Ni/CaO-P is maintained at 4.50 mmol·<em>g</em><sup>−1</sup> <sub>DFM</sub> with a CH<sub>4</sub> yield remaining stable at 0.50 mmol·<em>g</em><sup>−1</sup> <sub>DFM</sub> due to the slight sintering of Ni species. Integrated CO<sub>2</sub> capture and methanation offer a pathway for carbon recycling, emissions reduction, and sustainable development.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277265682400071X/pdfft?md5=70440aa0a214256731257d83e0c9a380&pid=1-s2.0-S277265682400071X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277265682400071X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Excessive CO2 emissions present significant environmental and energy challenges, driving the need for effective strategies to reduce CO2. Integrated CO2 capture and utilization (ICCU) processes have drawn considerable attention by combing carbon capture and catalytic conversion in a unified process. The rational design of efficient dual-functional materials (DFMs) is key to achieving high-efficiency ICCU processes. Here, we synthesized a series of CaO-based DFMs with varying Ni loadings, in which the porous hollow CaO prepared by a sacrificial template method was employed as the adsorbent. The porous hollow structure are effectively to improve the diffusion of CO2 species and provide sufficient space for volume expansion after CO2 capture. The optimized conditions for adsorption and catalytic sites were determined to be at 550 °C with 5wt% Ni loading. Under these conditions, the adsorption capacity of 5 %Ni/CaO-P reached 7.02 mmol·g−1 DFM, with a CH4 yield of 2.85 mmol·g−1 DFM and a CH4 selectivity of 94.09 %. After 19 cycles, the adsorption capacity of 5 %Ni/CaO-P is maintained at 4.50 mmol·g−1 DFM with a CH4 yield remaining stable at 0.50 mmol·g−1 DFM due to the slight sintering of Ni species. Integrated CO2 capture and methanation offer a pathway for carbon recycling, emissions reduction, and sustainable development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于集成二氧化碳捕获和甲烷化的多孔空心 Ni/CaO 双功能材料
过量的二氧化碳排放给环境和能源带来了巨大挑战,因此需要制定有效的二氧化碳减排战略。二氧化碳捕集与利用(ICCU)工艺将碳捕集和催化转化结合在一个统一的过程中,因而备受关注。合理设计高效的双功能材料(DFMs)是实现高效 ICCU 工艺的关键。在此,我们合成了一系列不同镍负载量的 CaO 基 DFMs,其中采用牺牲模板法制备的多孔空心 CaO 作为吸附剂。多孔中空结构有效地改善了二氧化碳的扩散,并为二氧化碳捕获后的体积膨胀提供了足够的空间。吸附和催化位点的优化条件被确定为 550 °C,镍的负载量为 5wt%。在这些条件下,5%Ni/CaO-P 的吸附容量达到 7.02 mmol-g-1 DFM,CH4 产率为 2.85 mmol-g-1 DFM,CH4 选择性为 94.09%。经过 19 次循环后,5%Ni/CaO-P 的吸附容量保持在 4.50 mmol-g-1 DFM,由于镍的轻微烧结,CH4 产率稳定在 0.50 mmol-g-1 DFM。综合二氧化碳捕集与甲烷化为碳回收、减排和可持续发展提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hypercrosslinked natural biopolymers with quasi-unimodal micropores for carbon capture Post-combustion CO2 capture retrofit from diesel-powered Arctic mines – Techno-economic and environmental assessment Carbon sequestration behavior of magnesium oxychloride cement based on salt lakes magnesium residue and industrial solid waste CO2 capture via subsurface mineralization geological settings and engineering perspectives towards long-term storage and decarbonization in the Middle East In-situ hydrogenation of dual function material for integrated CO2 capture and methanation with the presence of steam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1