Xufei Liu , Lin Zhang , Yuli Sun , Xuanyue Tong , Xuefei He , Yiqian Wei
{"title":"A novel variable discharge emitter for irrigation and salt-leaching","authors":"Xufei Liu , Lin Zhang , Yuli Sun , Xuanyue Tong , Xuefei He , Yiqian Wei","doi":"10.1016/j.biosystemseng.2024.08.006","DOIUrl":null,"url":null,"abstract":"<div><p>Enhancing the utilisation rate and productivity of saline-alkali land is critical in ensuring sufficient cultivated land resources and food security. Although drip irrigation technology maintains the crop yield in saline-alkali land, the irrigation water amount must be higher than the crop demand. To address this, the present study develops a novel variable discharge emitter (VDE), which consists of an upper cover, a bottom cover, and a diaphragm with a linear incision. The experimental results showed that the VDE achieved two rated discharge levels of 4.1 L h<sup>−1</sup> and 9.7 L h<sup>−1</sup> when the working water pressure was at 0.10 MPa and 0.16 MPa and when the length of the incision, the thickness of the diaphragm, and the hardness of diaphragm inside the VDE were 3.5 mm, 1.5 mm, and 55.0 HA, respectively. It suggests that VDE has two rated discharges for irrigation and salt-leaching based on two working water pressure ranges.</p></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"246 ","pages":"Pages 178-182"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537511024001843","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Enhancing the utilisation rate and productivity of saline-alkali land is critical in ensuring sufficient cultivated land resources and food security. Although drip irrigation technology maintains the crop yield in saline-alkali land, the irrigation water amount must be higher than the crop demand. To address this, the present study develops a novel variable discharge emitter (VDE), which consists of an upper cover, a bottom cover, and a diaphragm with a linear incision. The experimental results showed that the VDE achieved two rated discharge levels of 4.1 L h−1 and 9.7 L h−1 when the working water pressure was at 0.10 MPa and 0.16 MPa and when the length of the incision, the thickness of the diaphragm, and the hardness of diaphragm inside the VDE were 3.5 mm, 1.5 mm, and 55.0 HA, respectively. It suggests that VDE has two rated discharges for irrigation and salt-leaching based on two working water pressure ranges.
期刊介绍:
Biosystems Engineering publishes research in engineering and the physical sciences that represent advances in understanding or modelling of the performance of biological systems for sustainable developments in land use and the environment, agriculture and amenity, bioproduction processes and the food chain. The subject matter of the journal reflects the wide range and interdisciplinary nature of research in engineering for biological systems.